Asosiy tarkibga oʻtish
y uchun yechish (complex solution)
Tick mark Image
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+6y-14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -14 ni c bilan almashtiring.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
6 kvadratini chiqarish.
y=\frac{-6±\sqrt{36+56}}{2}
-4 ni -14 marotabaga ko'paytirish.
y=\frac{-6±\sqrt{92}}{2}
36 ni 56 ga qo'shish.
y=\frac{-6±2\sqrt{23}}{2}
92 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{23}-6}{2}
y=\frac{-6±2\sqrt{23}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{23} ga qo'shish.
y=\sqrt{23}-3
-6+2\sqrt{23} ni 2 ga bo'lish.
y=\frac{-2\sqrt{23}-6}{2}
y=\frac{-6±2\sqrt{23}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{23} ni ayirish.
y=-\sqrt{23}-3
-6-2\sqrt{23} ni 2 ga bo'lish.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Tenglama yechildi.
y^{2}+6y-14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
y^{2}+6y=14
14 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
y^{2}+6y+3^{2}=14+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+6y+9=14+9
3 kvadratini chiqarish.
y^{2}+6y+9=23
14 ni 9 ga qo'shish.
\left(y+3\right)^{2}=23
y^{2}+6y+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+3=\sqrt{23} y+3=-\sqrt{23}
Qisqartirish.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
y^{2}+6y-14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
y=\frac{-6±\sqrt{6^{2}-4\left(-14\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -14 ni c bilan almashtiring.
y=\frac{-6±\sqrt{36-4\left(-14\right)}}{2}
6 kvadratini chiqarish.
y=\frac{-6±\sqrt{36+56}}{2}
-4 ni -14 marotabaga ko'paytirish.
y=\frac{-6±\sqrt{92}}{2}
36 ni 56 ga qo'shish.
y=\frac{-6±2\sqrt{23}}{2}
92 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{23}-6}{2}
y=\frac{-6±2\sqrt{23}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{23} ga qo'shish.
y=\sqrt{23}-3
-6+2\sqrt{23} ni 2 ga bo'lish.
y=\frac{-2\sqrt{23}-6}{2}
y=\frac{-6±2\sqrt{23}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{23} ni ayirish.
y=-\sqrt{23}-3
-6-2\sqrt{23} ni 2 ga bo'lish.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Tenglama yechildi.
y^{2}+6y-14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
y^{2}+6y=14
14 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
y^{2}+6y+3^{2}=14+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+6y+9=14+9
3 kvadratini chiqarish.
y^{2}+6y+9=23
14 ni 9 ga qo'shish.
\left(y+3\right)^{2}=23
y^{2}+6y+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+3\right)^{2}}=\sqrt{23}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+3=\sqrt{23} y+3=-\sqrt{23}
Qisqartirish.
y=\sqrt{23}-3 y=-\sqrt{23}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.