x uchun yechish (complex solution)
x=50+50\sqrt{223}i\approx 50+746,659226153i
x=-50\sqrt{223}i+50\approx 50-746,659226153i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-100x+560000=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 560000}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -100 ni b va 560000 ni c bilan almashtiring.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 560000}}{2}
-100 kvadratini chiqarish.
x=\frac{-\left(-100\right)±\sqrt{10000-2240000}}{2}
-4 ni 560000 marotabaga ko'paytirish.
x=\frac{-\left(-100\right)±\sqrt{-2230000}}{2}
10000 ni -2240000 ga qo'shish.
x=\frac{-\left(-100\right)±100\sqrt{223}i}{2}
-2230000 ning kvadrat ildizini chiqarish.
x=\frac{100±100\sqrt{223}i}{2}
-100 ning teskarisi 100 ga teng.
x=\frac{100+100\sqrt{223}i}{2}
x=\frac{100±100\sqrt{223}i}{2} tenglamasini yeching, bunda ± musbat. 100 ni 100i\sqrt{223} ga qo'shish.
x=50+50\sqrt{223}i
100+100i\sqrt{223} ni 2 ga bo'lish.
x=\frac{-100\sqrt{223}i+100}{2}
x=\frac{100±100\sqrt{223}i}{2} tenglamasini yeching, bunda ± manfiy. 100 dan 100i\sqrt{223} ni ayirish.
x=-50\sqrt{223}i+50
100-100i\sqrt{223} ni 2 ga bo'lish.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
Tenglama yechildi.
x^{2}-100x+560000=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-100x=-560000
Ikkala tarafdan 560000 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-100x+\left(-50\right)^{2}=-560000+\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=-560000+2500
-50 kvadratini chiqarish.
x^{2}-100x+2500=-557500
-560000 ni 2500 ga qo'shish.
\left(x-50\right)^{2}=-557500
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{-557500}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=50\sqrt{223}i x-50=-50\sqrt{223}i
Qisqartirish.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
50 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}