x uchun yechish (complex solution)
x=\frac{\sqrt{15}i}{12}+\frac{1}{4}\approx 0,25+0,322748612i
x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}\approx 0,25-0,322748612i
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x^{2}-3x+1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -3 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6}}{2\times 6}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-24}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{-15}}{2\times 6}
9 ni -24 ga qo'shish.
x=\frac{-\left(-3\right)±\sqrt{15}i}{2\times 6}
-15 ning kvadrat ildizini chiqarish.
x=\frac{3±\sqrt{15}i}{2\times 6}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{15}i}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{3+\sqrt{15}i}{12}
x=\frac{3±\sqrt{15}i}{12} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{15} ga qo'shish.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4}
3+i\sqrt{15} ni 12 ga bo'lish.
x=\frac{-\sqrt{15}i+3}{12}
x=\frac{3±\sqrt{15}i}{12} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{15} ni ayirish.
x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
3-i\sqrt{15} ni 12 ga bo'lish.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4} x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
Tenglama yechildi.
6x^{2}-3x+1=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
6x^{2}-3x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{6x^{2}-3x}{6}=-\frac{1}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{3}{6}\right)x=-\frac{1}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{1}{6}
\frac{-3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{6}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{6}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{5}{48}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{6} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=-\frac{5}{48}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{5}{48}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{15}i}{12} x-\frac{1}{4}=-\frac{\sqrt{15}i}{12}
Qisqartirish.
x=\frac{\sqrt{15}i}{12}+\frac{1}{4} x=-\frac{\sqrt{15}i}{12}+\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}