Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-7x+3=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\times 3}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -7 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\times 3}}{2\times 5}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-20\times 3}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49-60}}{2\times 5}
-20 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{-11}}{2\times 5}
49 ni -60 ga qo'shish.
x=\frac{-\left(-7\right)±\sqrt{11}i}{2\times 5}
-11 ning kvadrat ildizini chiqarish.
x=\frac{7±\sqrt{11}i}{2\times 5}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{11}i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{7+\sqrt{11}i}{10}
x=\frac{7±\sqrt{11}i}{10} tenglamasini yeching, bunda ± musbat. 7 ni i\sqrt{11} ga qo'shish.
x=\frac{-\sqrt{11}i+7}{10}
x=\frac{7±\sqrt{11}i}{10} tenglamasini yeching, bunda ± manfiy. 7 dan i\sqrt{11} ni ayirish.
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
Tenglama yechildi.
5x^{2}-7x+3=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
5x^{2}-7x=-3
Ikkala tarafdan 3 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{5x^{2}-7x}{5}=-\frac{3}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}-\frac{7}{5}x=-\frac{3}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{7}{10}\right)^{2}
-\frac{7}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{10} olish uchun. Keyin, -\frac{7}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{3}{5}+\frac{49}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{10} kvadratini chiqarish.
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{11}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{5} ni \frac{49}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{10}\right)^{2}=-\frac{11}{100}
x^{2}-\frac{7}{5}x+\frac{49}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{-\frac{11}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{10}=\frac{\sqrt{11}i}{10} x-\frac{7}{10}=-\frac{\sqrt{11}i}{10}
Qisqartirish.
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
\frac{7}{10} ni tenglamaning ikkala tarafiga qo'shish.