x uchun yechish (complex solution)
x=\frac{9+\sqrt{143}i}{8}\approx 1,125+1,494782593i
x=\frac{-\sqrt{143}i+9}{8}\approx 1,125-1,494782593i
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-9x+14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 14}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -9 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 14}}{2\times 4}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-16\times 14}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81-224}}{2\times 4}
-16 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{-143}}{2\times 4}
81 ni -224 ga qo'shish.
x=\frac{-\left(-9\right)±\sqrt{143}i}{2\times 4}
-143 ning kvadrat ildizini chiqarish.
x=\frac{9±\sqrt{143}i}{2\times 4}
-9 ning teskarisi 9 ga teng.
x=\frac{9±\sqrt{143}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{9+\sqrt{143}i}{8}
x=\frac{9±\sqrt{143}i}{8} tenglamasini yeching, bunda ± musbat. 9 ni i\sqrt{143} ga qo'shish.
x=\frac{-\sqrt{143}i+9}{8}
x=\frac{9±\sqrt{143}i}{8} tenglamasini yeching, bunda ± manfiy. 9 dan i\sqrt{143} ni ayirish.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
Tenglama yechildi.
4x^{2}-9x+14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-9x=-14
Ikkala tarafdan 14 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{4x^{2}-9x}{4}=-\frac{14}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{9}{4}x=-\frac{14}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{4}x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=-\frac{7}{2}+\left(-\frac{9}{8}\right)^{2}
-\frac{9}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{8} olish uchun. Keyin, -\frac{9}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{7}{2}+\frac{81}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{8} kvadratini chiqarish.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{143}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{2} ni \frac{81}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{8}\right)^{2}=-\frac{143}{64}
x^{2}-\frac{9}{4}x+\frac{81}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{-\frac{143}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{8}=\frac{\sqrt{143}i}{8} x-\frac{9}{8}=-\frac{\sqrt{143}i}{8}
Qisqartirish.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
\frac{9}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}