Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-9x+14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 14}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -9 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 14}}{2\times 4}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-16\times 14}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81-224}}{2\times 4}
-16 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{-143}}{2\times 4}
81 ni -224 ga qo'shish.
x=\frac{-\left(-9\right)±\sqrt{143}i}{2\times 4}
-143 ning kvadrat ildizini chiqarish.
x=\frac{9±\sqrt{143}i}{2\times 4}
-9 ning teskarisi 9 ga teng.
x=\frac{9±\sqrt{143}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{9+\sqrt{143}i}{8}
x=\frac{9±\sqrt{143}i}{8} tenglamasini yeching, bunda ± musbat. 9 ni i\sqrt{143} ga qo'shish.
x=\frac{-\sqrt{143}i+9}{8}
x=\frac{9±\sqrt{143}i}{8} tenglamasini yeching, bunda ± manfiy. 9 dan i\sqrt{143} ni ayirish.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
Tenglama yechildi.
4x^{2}-9x+14=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-9x=-14
Ikkala tarafdan 14 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{4x^{2}-9x}{4}=-\frac{14}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{9}{4}x=-\frac{14}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{4}x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=-\frac{7}{2}+\left(-\frac{9}{8}\right)^{2}
-\frac{9}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{8} olish uchun. Keyin, -\frac{9}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{7}{2}+\frac{81}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{8} kvadratini chiqarish.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{143}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{2} ni \frac{81}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{8}\right)^{2}=-\frac{143}{64}
x^{2}-\frac{9}{4}x+\frac{81}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{-\frac{143}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{8}=\frac{\sqrt{143}i}{8} x-\frac{9}{8}=-\frac{\sqrt{143}i}{8}
Qisqartirish.
x=\frac{9+\sqrt{143}i}{8} x=\frac{-\sqrt{143}i+9}{8}
\frac{9}{8} ni tenglamaning ikkala tarafiga qo'shish.