Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2n^{2}+3n-340=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
n=\frac{-3±\sqrt{3^{2}-4\times 2\left(-340\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 3 ni b va -340 ni c bilan almashtiring.
n=\frac{-3±\sqrt{9-4\times 2\left(-340\right)}}{2\times 2}
3 kvadratini chiqarish.
n=\frac{-3±\sqrt{9-8\left(-340\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
n=\frac{-3±\sqrt{9+2720}}{2\times 2}
-8 ni -340 marotabaga ko'paytirish.
n=\frac{-3±\sqrt{2729}}{2\times 2}
9 ni 2720 ga qo'shish.
n=\frac{-3±\sqrt{2729}}{4}
2 ni 2 marotabaga ko'paytirish.
n=\frac{\sqrt{2729}-3}{4}
n=\frac{-3±\sqrt{2729}}{4} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{2729} ga qo'shish.
n=\frac{-\sqrt{2729}-3}{4}
n=\frac{-3±\sqrt{2729}}{4} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{2729} ni ayirish.
n=\frac{\sqrt{2729}-3}{4} n=\frac{-\sqrt{2729}-3}{4}
Tenglama yechildi.
2n^{2}+3n-340=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2n^{2}+3n=340
340 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2n^{2}+3n}{2}=\frac{340}{2}
Ikki tarafini 2 ga bo‘ling.
n^{2}+\frac{3}{2}n=\frac{340}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{3}{2}n=170
340 ni 2 ga bo'lish.
n^{2}+\frac{3}{2}n+\left(\frac{3}{4}\right)^{2}=170+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{3}{2}n+\frac{9}{16}=170+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
n^{2}+\frac{3}{2}n+\frac{9}{16}=\frac{2729}{16}
170 ni \frac{9}{16} ga qo'shish.
\left(n+\frac{3}{4}\right)^{2}=\frac{2729}{16}
n^{2}+\frac{3}{2}n+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{3}{4}\right)^{2}}=\sqrt{\frac{2729}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{3}{4}=\frac{\sqrt{2729}}{4} n+\frac{3}{4}=-\frac{\sqrt{2729}}{4}
Qisqartirish.
n=\frac{\sqrt{2729}-3}{4} n=\frac{-\sqrt{2729}-3}{4}
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.