x uchun yechish
x=-2
x=8
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
0 = - \frac { 1 } { 4 } x ^ { 2 } + \frac { 3 } { 2 } x + 4
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{4} ni a, \frac{3}{2} ni b va 4 ni c bilan almashtiring.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{4}\right)}
-4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\frac{3}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{4}\right)}
\frac{9}{4} ni 4 ga qo'shish.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{4}\right)}
\frac{25}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}}
2 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{1}{-\frac{1}{2}}
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{5}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-2
1 ni -\frac{1}{2} ga bo'lish 1 ga k'paytirish -\frac{1}{2} ga qaytarish.
x=-\frac{4}{-\frac{1}{2}}
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{5}{2} ni -\frac{3}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=8
-4 ni -\frac{1}{2} ga bo'lish -4 ga k'paytirish -\frac{1}{2} ga qaytarish.
x=-2 x=8
Tenglama yechildi.
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{4}x^{2}+\frac{3}{2}x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-\frac{1}{4}x^{2}+\frac{3}{2}x}{-\frac{1}{4}}=-\frac{4}{-\frac{1}{4}}
Ikkala tarafini -4 ga ko‘paytiring.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{4}}x=-\frac{4}{-\frac{1}{4}}
-\frac{1}{4} ga bo'lish -\frac{1}{4} ga ko'paytirishni bekor qiladi.
x^{2}-6x=-\frac{4}{-\frac{1}{4}}
\frac{3}{2} ni -\frac{1}{4} ga bo'lish \frac{3}{2} ga k'paytirish -\frac{1}{4} ga qaytarish.
x^{2}-6x=16
-4 ni -\frac{1}{4} ga bo'lish -4 ga k'paytirish -\frac{1}{4} ga qaytarish.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=16+9
-3 kvadratini chiqarish.
x^{2}-6x+9=25
16 ni 9 ga qo'shish.
\left(x-3\right)^{2}=25
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=5 x-3=-5
Qisqartirish.
x=8 x=-2
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}