Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{4} ni a, \frac{3}{2} ni b va 4 ni c bilan almashtiring.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{4}\right)}
-4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\frac{3}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{4}\right)}
\frac{9}{4} ni 4 ga qo'shish.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{4}\right)}
\frac{25}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}}
2 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{1}{-\frac{1}{2}}
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{5}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-2
1 ni -\frac{1}{2} ga bo'lish 1 ga k'paytirish -\frac{1}{2} ga qaytarish.
x=-\frac{4}{-\frac{1}{2}}
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{5}{2} ni -\frac{3}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=8
-4 ni -\frac{1}{2} ga bo'lish -4 ga k'paytirish -\frac{1}{2} ga qaytarish.
x=-2 x=8
Tenglama yechildi.
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{4}x^{2}+\frac{3}{2}x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-\frac{1}{4}x^{2}+\frac{3}{2}x}{-\frac{1}{4}}=-\frac{4}{-\frac{1}{4}}
Ikkala tarafini -4 ga ko‘paytiring.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{4}}x=-\frac{4}{-\frac{1}{4}}
-\frac{1}{4} ga bo'lish -\frac{1}{4} ga ko'paytirishni bekor qiladi.
x^{2}-6x=-\frac{4}{-\frac{1}{4}}
\frac{3}{2} ni -\frac{1}{4} ga bo'lish \frac{3}{2} ga k'paytirish -\frac{1}{4} ga qaytarish.
x^{2}-6x=16
-4 ni -\frac{1}{4} ga bo'lish -4 ga k'paytirish -\frac{1}{4} ga qaytarish.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=16+9
-3 kvadratini chiqarish.
x^{2}-6x+9=25
16 ni 9 ga qo'shish.
\left(x-3\right)^{2}=25
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=5 x-3=-5
Qisqartirish.
x=8 x=-2
3 ni tenglamaning ikkala tarafiga qo'shish.