x uchun yechish
x=-4
x=10
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
-8- \frac{ 1 }{ 8 } { x }^{ 2 } +x=( \frac{ 1 }{ 4 } x-1)(3-x)
Baham ko'rish
Klipbordga nusxa olish
-8-\frac{1}{8}x^{2}+x=\frac{7}{4}x-\frac{1}{4}x^{2}-3
\frac{1}{4}x-1 ga 3-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8-\frac{1}{8}x^{2}+x-\frac{7}{4}x=-\frac{1}{4}x^{2}-3
Ikkala tarafdan \frac{7}{4}x ni ayirish.
-8-\frac{1}{8}x^{2}-\frac{3}{4}x=-\frac{1}{4}x^{2}-3
-\frac{3}{4}x ni olish uchun x va -\frac{7}{4}x ni birlashtirish.
-8-\frac{1}{8}x^{2}-\frac{3}{4}x+\frac{1}{4}x^{2}=-3
\frac{1}{4}x^{2} ni ikki tarafga qo’shing.
-8+\frac{1}{8}x^{2}-\frac{3}{4}x=-3
\frac{1}{8}x^{2} ni olish uchun -\frac{1}{8}x^{2} va \frac{1}{4}x^{2} ni birlashtirish.
-8+\frac{1}{8}x^{2}-\frac{3}{4}x+3=0
3 ni ikki tarafga qo’shing.
-5+\frac{1}{8}x^{2}-\frac{3}{4}x=0
-5 olish uchun -8 va 3'ni qo'shing.
\frac{1}{8}x^{2}-\frac{3}{4}x-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\left(-\frac{3}{4}\right)^{2}-4\times \frac{1}{8}\left(-5\right)}}{2\times \frac{1}{8}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{8} ni a, -\frac{3}{4} ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-4\times \frac{1}{8}\left(-5\right)}}{2\times \frac{1}{8}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-\frac{1}{2}\left(-5\right)}}{2\times \frac{1}{8}}
-4 ni \frac{1}{8} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+\frac{5}{2}}}{2\times \frac{1}{8}}
-\frac{1}{2} ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{49}{16}}}{2\times \frac{1}{8}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{16} ni \frac{5}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{3}{4}\right)±\frac{7}{4}}{2\times \frac{1}{8}}
\frac{49}{16} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{4}±\frac{7}{4}}{2\times \frac{1}{8}}
-\frac{3}{4} ning teskarisi \frac{3}{4} ga teng.
x=\frac{\frac{3}{4}±\frac{7}{4}}{\frac{1}{4}}
2 ni \frac{1}{8} marotabaga ko'paytirish.
x=\frac{\frac{5}{2}}{\frac{1}{4}}
x=\frac{\frac{3}{4}±\frac{7}{4}}{\frac{1}{4}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{4} ni \frac{7}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=10
\frac{5}{2} ni \frac{1}{4} ga bo'lish \frac{5}{2} ga k'paytirish \frac{1}{4} ga qaytarish.
x=-\frac{1}{\frac{1}{4}}
x=\frac{\frac{3}{4}±\frac{7}{4}}{\frac{1}{4}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{7}{4} ni \frac{3}{4} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-4
-1 ni \frac{1}{4} ga bo'lish -1 ga k'paytirish \frac{1}{4} ga qaytarish.
x=10 x=-4
Tenglama yechildi.
-8-\frac{1}{8}x^{2}+x=\frac{7}{4}x-\frac{1}{4}x^{2}-3
\frac{1}{4}x-1 ga 3-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-8-\frac{1}{8}x^{2}+x-\frac{7}{4}x=-\frac{1}{4}x^{2}-3
Ikkala tarafdan \frac{7}{4}x ni ayirish.
-8-\frac{1}{8}x^{2}-\frac{3}{4}x=-\frac{1}{4}x^{2}-3
-\frac{3}{4}x ni olish uchun x va -\frac{7}{4}x ni birlashtirish.
-8-\frac{1}{8}x^{2}-\frac{3}{4}x+\frac{1}{4}x^{2}=-3
\frac{1}{4}x^{2} ni ikki tarafga qo’shing.
-8+\frac{1}{8}x^{2}-\frac{3}{4}x=-3
\frac{1}{8}x^{2} ni olish uchun -\frac{1}{8}x^{2} va \frac{1}{4}x^{2} ni birlashtirish.
\frac{1}{8}x^{2}-\frac{3}{4}x=-3+8
8 ni ikki tarafga qo’shing.
\frac{1}{8}x^{2}-\frac{3}{4}x=5
5 olish uchun -3 va 8'ni qo'shing.
\frac{\frac{1}{8}x^{2}-\frac{3}{4}x}{\frac{1}{8}}=\frac{5}{\frac{1}{8}}
Ikkala tarafini 8 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{4}}{\frac{1}{8}}\right)x=\frac{5}{\frac{1}{8}}
\frac{1}{8} ga bo'lish \frac{1}{8} ga ko'paytirishni bekor qiladi.
x^{2}-6x=\frac{5}{\frac{1}{8}}
-\frac{3}{4} ni \frac{1}{8} ga bo'lish -\frac{3}{4} ga k'paytirish \frac{1}{8} ga qaytarish.
x^{2}-6x=40
5 ni \frac{1}{8} ga bo'lish 5 ga k'paytirish \frac{1}{8} ga qaytarish.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=40+9
-3 kvadratini chiqarish.
x^{2}-6x+9=49
40 ni 9 ga qo'shish.
\left(x-3\right)^{2}=49
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=7 x-3=-7
Qisqartirish.
x=10 x=-4
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}