x uchun yechish
x=-\frac{151}{780}\approx -0,193589744
Grafik
Viktorina
Polynomial
5xshash muammolar:
-793x+9 \left( x-15 \right) +4 \left( x-4 \right) \frac{ x }{ x } =0
Baham ko'rish
Klipbordga nusxa olish
-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
9 ga x-15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
9x-135 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4\left(x-4\right)x=0
-784x^{2} ni olish uchun -793x^{2} va 9x^{2} ni birlashtirish.
-784x^{2}-135x+\left(4x-16\right)x=0
4 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4x^{2}-16x=0
4x-16 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-780x^{2}-135x-16x=0
-780x^{2} ni olish uchun -784x^{2} va 4x^{2} ni birlashtirish.
-780x^{2}-151x=0
-151x ni olish uchun -135x va -16x ni birlashtirish.
x\left(-780x-151\right)=0
x omili.
x=0 x=-\frac{151}{780}
Tenglamani yechish uchun x=0 va -780x-151=0 ni yeching.
x=-\frac{151}{780}
x qiymati 0 teng bo‘lmaydi.
-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
9 ga x-15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
9x-135 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4\left(x-4\right)x=0
-784x^{2} ni olish uchun -793x^{2} va 9x^{2} ni birlashtirish.
-784x^{2}-135x+\left(4x-16\right)x=0
4 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4x^{2}-16x=0
4x-16 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-780x^{2}-135x-16x=0
-780x^{2} ni olish uchun -784x^{2} va 4x^{2} ni birlashtirish.
-780x^{2}-151x=0
-151x ni olish uchun -135x va -16x ni birlashtirish.
x=\frac{-\left(-151\right)±\sqrt{\left(-151\right)^{2}}}{2\left(-780\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -780 ni a, -151 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-151\right)±151}{2\left(-780\right)}
\left(-151\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{151±151}{2\left(-780\right)}
-151 ning teskarisi 151 ga teng.
x=\frac{151±151}{-1560}
2 ni -780 marotabaga ko'paytirish.
x=\frac{302}{-1560}
x=\frac{151±151}{-1560} tenglamasini yeching, bunda ± musbat. 151 ni 151 ga qo'shish.
x=-\frac{151}{780}
\frac{302}{-1560} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{-1560}
x=\frac{151±151}{-1560} tenglamasini yeching, bunda ± manfiy. 151 dan 151 ni ayirish.
x=0
0 ni -1560 ga bo'lish.
x=-\frac{151}{780} x=0
Tenglama yechildi.
x=-\frac{151}{780}
x qiymati 0 teng bo‘lmaydi.
-793xx+9\left(x-15\right)x+4\left(x-4\right)x=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-793x^{2}+9\left(x-15\right)x+4\left(x-4\right)x=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-793x^{2}+\left(9x-135\right)x+4\left(x-4\right)x=0
9 ga x-15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-793x^{2}+9x^{2}-135x+4\left(x-4\right)x=0
9x-135 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4\left(x-4\right)x=0
-784x^{2} ni olish uchun -793x^{2} va 9x^{2} ni birlashtirish.
-784x^{2}-135x+\left(4x-16\right)x=0
4 ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-784x^{2}-135x+4x^{2}-16x=0
4x-16 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-780x^{2}-135x-16x=0
-780x^{2} ni olish uchun -784x^{2} va 4x^{2} ni birlashtirish.
-780x^{2}-151x=0
-151x ni olish uchun -135x va -16x ni birlashtirish.
\frac{-780x^{2}-151x}{-780}=\frac{0}{-780}
Ikki tarafini -780 ga bo‘ling.
x^{2}+\left(-\frac{151}{-780}\right)x=\frac{0}{-780}
-780 ga bo'lish -780 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{151}{780}x=\frac{0}{-780}
-151 ni -780 ga bo'lish.
x^{2}+\frac{151}{780}x=0
0 ni -780 ga bo'lish.
x^{2}+\frac{151}{780}x+\left(\frac{151}{1560}\right)^{2}=\left(\frac{151}{1560}\right)^{2}
\frac{151}{780} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{151}{1560} olish uchun. Keyin, \frac{151}{1560} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{151}{780}x+\frac{22801}{2433600}=\frac{22801}{2433600}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{151}{1560} kvadratini chiqarish.
\left(x+\frac{151}{1560}\right)^{2}=\frac{22801}{2433600}
x^{2}+\frac{151}{780}x+\frac{22801}{2433600} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{151}{1560}\right)^{2}}=\sqrt{\frac{22801}{2433600}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{151}{1560}=\frac{151}{1560} x+\frac{151}{1560}=-\frac{151}{1560}
Qisqartirish.
x=0 x=-\frac{151}{780}
Tenglamaning ikkala tarafidan \frac{151}{1560} ni ayirish.
x=-\frac{151}{780}
x qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}