Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5x-2-3x^{2}=-4x
Ikkala tarafdan 3x^{2} ni ayirish.
-5x-2-3x^{2}+4x=0
4x ni ikki tarafga qo’shing.
-x-2-3x^{2}=0
-x ni olish uchun -5x va 4x ni birlashtirish.
-3x^{2}-x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, -1 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+12\left(-2\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-24}}{2\left(-3\right)}
12 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-23}}{2\left(-3\right)}
1 ni -24 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{23}i}{2\left(-3\right)}
-23 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{23}i}{2\left(-3\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{23}i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{1+\sqrt{23}i}{-6}
x=\frac{1±\sqrt{23}i}{-6} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i-1}{6}
1+i\sqrt{23} ni -6 ga bo'lish.
x=\frac{-\sqrt{23}i+1}{-6}
x=\frac{1±\sqrt{23}i}{-6} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{23} ni ayirish.
x=\frac{-1+\sqrt{23}i}{6}
1-i\sqrt{23} ni -6 ga bo'lish.
x=\frac{-\sqrt{23}i-1}{6} x=\frac{-1+\sqrt{23}i}{6}
Tenglama yechildi.
-5x-2-3x^{2}=-4x
Ikkala tarafdan 3x^{2} ni ayirish.
-5x-2-3x^{2}+4x=0
4x ni ikki tarafga qo’shing.
-x-2-3x^{2}=0
-x ni olish uchun -5x va 4x ni birlashtirish.
-x-3x^{2}=2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-3x^{2}-x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}-x}{-3}=\frac{2}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\left(-\frac{1}{-3}\right)x=\frac{2}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{3}x=\frac{2}{-3}
-1 ni -3 ga bo'lish.
x^{2}+\frac{1}{3}x=-\frac{2}{3}
2 ni -3 ga bo'lish.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{6}\right)^{2}=-\frac{23}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{6}=\frac{\sqrt{23}i}{6} x+\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Qisqartirish.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.