t uchun yechish
t = \frac{\sqrt{23181} + 51}{98} \approx 2,074011008
t=\frac{51-\sqrt{23181}}{98}\approx -1,033194681
Baham ko'rish
Klipbordga nusxa olish
49t^{2}-51t=105
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
49t^{2}-51t-105=105-105
Tenglamaning ikkala tarafidan 105 ni ayirish.
49t^{2}-51t-105=0
O‘zidan 105 ayirilsa 0 qoladi.
t=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\times 49\left(-105\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -51 ni b va -105 ni c bilan almashtiring.
t=\frac{-\left(-51\right)±\sqrt{2601-4\times 49\left(-105\right)}}{2\times 49}
-51 kvadratini chiqarish.
t=\frac{-\left(-51\right)±\sqrt{2601-196\left(-105\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
t=\frac{-\left(-51\right)±\sqrt{2601+20580}}{2\times 49}
-196 ni -105 marotabaga ko'paytirish.
t=\frac{-\left(-51\right)±\sqrt{23181}}{2\times 49}
2601 ni 20580 ga qo'shish.
t=\frac{51±\sqrt{23181}}{2\times 49}
-51 ning teskarisi 51 ga teng.
t=\frac{51±\sqrt{23181}}{98}
2 ni 49 marotabaga ko'paytirish.
t=\frac{\sqrt{23181}+51}{98}
t=\frac{51±\sqrt{23181}}{98} tenglamasini yeching, bunda ± musbat. 51 ni \sqrt{23181} ga qo'shish.
t=\frac{51-\sqrt{23181}}{98}
t=\frac{51±\sqrt{23181}}{98} tenglamasini yeching, bunda ± manfiy. 51 dan \sqrt{23181} ni ayirish.
t=\frac{\sqrt{23181}+51}{98} t=\frac{51-\sqrt{23181}}{98}
Tenglama yechildi.
49t^{2}-51t=105
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{49t^{2}-51t}{49}=\frac{105}{49}
Ikki tarafini 49 ga bo‘ling.
t^{2}-\frac{51}{49}t=\frac{105}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{51}{49}t=\frac{15}{7}
\frac{105}{49} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{51}{49}t+\left(-\frac{51}{98}\right)^{2}=\frac{15}{7}+\left(-\frac{51}{98}\right)^{2}
-\frac{51}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{51}{98} olish uchun. Keyin, -\frac{51}{98} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{51}{49}t+\frac{2601}{9604}=\frac{15}{7}+\frac{2601}{9604}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{51}{98} kvadratini chiqarish.
t^{2}-\frac{51}{49}t+\frac{2601}{9604}=\frac{23181}{9604}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{7} ni \frac{2601}{9604} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(t-\frac{51}{98}\right)^{2}=\frac{23181}{9604}
t^{2}-\frac{51}{49}t+\frac{2601}{9604} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{51}{98}\right)^{2}}=\sqrt{\frac{23181}{9604}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{51}{98}=\frac{\sqrt{23181}}{98} t-\frac{51}{98}=-\frac{\sqrt{23181}}{98}
Qisqartirish.
t=\frac{\sqrt{23181}+51}{98} t=\frac{51-\sqrt{23181}}{98}
\frac{51}{98} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}