a uchun yechish
a=\sqrt{1609}+53\approx 93,11234224
a=53-\sqrt{1609}\approx 12,88765776
Baham ko'rish
Klipbordga nusxa olish
-500a^{2}+53000a=600000
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-500a^{2}+53000a-600000=600000-600000
Tenglamaning ikkala tarafidan 600000 ni ayirish.
-500a^{2}+53000a-600000=0
O‘zidan 600000 ayirilsa 0 qoladi.
a=\frac{-53000±\sqrt{53000^{2}-4\left(-500\right)\left(-600000\right)}}{2\left(-500\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -500 ni a, 53000 ni b va -600000 ni c bilan almashtiring.
a=\frac{-53000±\sqrt{2809000000-4\left(-500\right)\left(-600000\right)}}{2\left(-500\right)}
53000 kvadratini chiqarish.
a=\frac{-53000±\sqrt{2809000000+2000\left(-600000\right)}}{2\left(-500\right)}
-4 ni -500 marotabaga ko'paytirish.
a=\frac{-53000±\sqrt{2809000000-1200000000}}{2\left(-500\right)}
2000 ni -600000 marotabaga ko'paytirish.
a=\frac{-53000±\sqrt{1609000000}}{2\left(-500\right)}
2809000000 ni -1200000000 ga qo'shish.
a=\frac{-53000±1000\sqrt{1609}}{2\left(-500\right)}
1609000000 ning kvadrat ildizini chiqarish.
a=\frac{-53000±1000\sqrt{1609}}{-1000}
2 ni -500 marotabaga ko'paytirish.
a=\frac{1000\sqrt{1609}-53000}{-1000}
a=\frac{-53000±1000\sqrt{1609}}{-1000} tenglamasini yeching, bunda ± musbat. -53000 ni 1000\sqrt{1609} ga qo'shish.
a=53-\sqrt{1609}
-53000+1000\sqrt{1609} ni -1000 ga bo'lish.
a=\frac{-1000\sqrt{1609}-53000}{-1000}
a=\frac{-53000±1000\sqrt{1609}}{-1000} tenglamasini yeching, bunda ± manfiy. -53000 dan 1000\sqrt{1609} ni ayirish.
a=\sqrt{1609}+53
-53000-1000\sqrt{1609} ni -1000 ga bo'lish.
a=53-\sqrt{1609} a=\sqrt{1609}+53
Tenglama yechildi.
-500a^{2}+53000a=600000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-500a^{2}+53000a}{-500}=\frac{600000}{-500}
Ikki tarafini -500 ga bo‘ling.
a^{2}+\frac{53000}{-500}a=\frac{600000}{-500}
-500 ga bo'lish -500 ga ko'paytirishni bekor qiladi.
a^{2}-106a=\frac{600000}{-500}
53000 ni -500 ga bo'lish.
a^{2}-106a=-1200
600000 ni -500 ga bo'lish.
a^{2}-106a+\left(-53\right)^{2}=-1200+\left(-53\right)^{2}
-106 ni bo‘lish, x shartining koeffitsienti, 2 ga -53 olish uchun. Keyin, -53 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-106a+2809=-1200+2809
-53 kvadratini chiqarish.
a^{2}-106a+2809=1609
-1200 ni 2809 ga qo'shish.
\left(a-53\right)^{2}=1609
a^{2}-106a+2809 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-53\right)^{2}}=\sqrt{1609}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-53=\sqrt{1609} a-53=-\sqrt{1609}
Qisqartirish.
a=\sqrt{1609}+53 a=53-\sqrt{1609}
53 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}