Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-49x^{2}+9x+22=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\left(-49\right)\times 22}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, 9 ni b va 22 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-49\right)\times 22}}{2\left(-49\right)}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+196\times 22}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+4312}}{2\left(-49\right)}
196 ni 22 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{4393}}{2\left(-49\right)}
81 ni 4312 ga qo'shish.
x=\frac{-9±\sqrt{4393}}{-98}
2 ni -49 marotabaga ko'paytirish.
x=\frac{\sqrt{4393}-9}{-98}
x=\frac{-9±\sqrt{4393}}{-98} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{4393} ga qo'shish.
x=\frac{9-\sqrt{4393}}{98}
-9+\sqrt{4393} ni -98 ga bo'lish.
x=\frac{-\sqrt{4393}-9}{-98}
x=\frac{-9±\sqrt{4393}}{-98} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{4393} ni ayirish.
x=\frac{\sqrt{4393}+9}{98}
-9-\sqrt{4393} ni -98 ga bo'lish.
x=\frac{9-\sqrt{4393}}{98} x=\frac{\sqrt{4393}+9}{98}
Tenglama yechildi.
-49x^{2}+9x+22=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-49x^{2}+9x+22-22=-22
Tenglamaning ikkala tarafidan 22 ni ayirish.
-49x^{2}+9x=-22
O‘zidan 22 ayirilsa 0 qoladi.
\frac{-49x^{2}+9x}{-49}=-\frac{22}{-49}
Ikki tarafini -49 ga bo‘ling.
x^{2}+\frac{9}{-49}x=-\frac{22}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{49}x=-\frac{22}{-49}
9 ni -49 ga bo'lish.
x^{2}-\frac{9}{49}x=\frac{22}{49}
-22 ni -49 ga bo'lish.
x^{2}-\frac{9}{49}x+\left(-\frac{9}{98}\right)^{2}=\frac{22}{49}+\left(-\frac{9}{98}\right)^{2}
-\frac{9}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{98} olish uchun. Keyin, -\frac{9}{98} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{49}x+\frac{81}{9604}=\frac{22}{49}+\frac{81}{9604}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{98} kvadratini chiqarish.
x^{2}-\frac{9}{49}x+\frac{81}{9604}=\frac{4393}{9604}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{22}{49} ni \frac{81}{9604} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{98}\right)^{2}=\frac{4393}{9604}
x^{2}-\frac{9}{49}x+\frac{81}{9604} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{98}\right)^{2}}=\sqrt{\frac{4393}{9604}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{98}=\frac{\sqrt{4393}}{98} x-\frac{9}{98}=-\frac{\sqrt{4393}}{98}
Qisqartirish.
x=\frac{\sqrt{4393}+9}{98} x=\frac{9-\sqrt{4393}}{98}
\frac{9}{98} ni tenglamaning ikkala tarafiga qo'shish.