Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x-2x^{2}=7x-4
Ikkala tarafdan 2x^{2} ni ayirish.
-4x-2x^{2}-7x=-4
Ikkala tarafdan 7x ni ayirish.
-11x-2x^{2}=-4
-11x ni olish uchun -4x va -7x ni birlashtirish.
-11x-2x^{2}+4=0
4 ni ikki tarafga qo’shing.
-2x^{2}-11x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -11 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-2\right)\times 4}}{2\left(-2\right)}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121+8\times 4}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121+32}}{2\left(-2\right)}
8 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{153}}{2\left(-2\right)}
121 ni 32 ga qo'shish.
x=\frac{-\left(-11\right)±3\sqrt{17}}{2\left(-2\right)}
153 ning kvadrat ildizini chiqarish.
x=\frac{11±3\sqrt{17}}{2\left(-2\right)}
-11 ning teskarisi 11 ga teng.
x=\frac{11±3\sqrt{17}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{3\sqrt{17}+11}{-4}
x=\frac{11±3\sqrt{17}}{-4} tenglamasini yeching, bunda ± musbat. 11 ni 3\sqrt{17} ga qo'shish.
x=\frac{-3\sqrt{17}-11}{4}
11+3\sqrt{17} ni -4 ga bo'lish.
x=\frac{11-3\sqrt{17}}{-4}
x=\frac{11±3\sqrt{17}}{-4} tenglamasini yeching, bunda ± manfiy. 11 dan 3\sqrt{17} ni ayirish.
x=\frac{3\sqrt{17}-11}{4}
11-3\sqrt{17} ni -4 ga bo'lish.
x=\frac{-3\sqrt{17}-11}{4} x=\frac{3\sqrt{17}-11}{4}
Tenglama yechildi.
-4x-2x^{2}=7x-4
Ikkala tarafdan 2x^{2} ni ayirish.
-4x-2x^{2}-7x=-4
Ikkala tarafdan 7x ni ayirish.
-11x-2x^{2}=-4
-11x ni olish uchun -4x va -7x ni birlashtirish.
-2x^{2}-11x=-4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}-11x}{-2}=-\frac{4}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{11}{-2}\right)x=-\frac{4}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{2}x=-\frac{4}{-2}
-11 ni -2 ga bo'lish.
x^{2}+\frac{11}{2}x=2
-4 ni -2 ga bo'lish.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=2+\left(\frac{11}{4}\right)^{2}
\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{4} olish uchun. Keyin, \frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{2}x+\frac{121}{16}=2+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{4} kvadratini chiqarish.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{153}{16}
2 ni \frac{121}{16} ga qo'shish.
\left(x+\frac{11}{4}\right)^{2}=\frac{153}{16}
x^{2}+\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{153}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{4}=\frac{3\sqrt{17}}{4} x+\frac{11}{4}=-\frac{3\sqrt{17}}{4}
Qisqartirish.
x=\frac{3\sqrt{17}-11}{4} x=\frac{-3\sqrt{17}-11}{4}
Tenglamaning ikkala tarafidan \frac{11}{4} ni ayirish.