Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4x^{2}+20x-47=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-20±\sqrt{20^{2}-4\left(-4\right)\left(-47\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 20 ni b va -47 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-4\right)\left(-47\right)}}{2\left(-4\right)}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+16\left(-47\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{400-752}}{2\left(-4\right)}
16 ni -47 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{-352}}{2\left(-4\right)}
400 ni -752 ga qo'shish.
x=\frac{-20±4\sqrt{22}i}{2\left(-4\right)}
-352 ning kvadrat ildizini chiqarish.
x=\frac{-20±4\sqrt{22}i}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{-20+4\sqrt{22}i}{-8}
x=\frac{-20±4\sqrt{22}i}{-8} tenglamasini yeching, bunda ± musbat. -20 ni 4i\sqrt{22} ga qo'shish.
x=\frac{-\sqrt{22}i+5}{2}
-20+4i\sqrt{22} ni -8 ga bo'lish.
x=\frac{-4\sqrt{22}i-20}{-8}
x=\frac{-20±4\sqrt{22}i}{-8} tenglamasini yeching, bunda ± manfiy. -20 dan 4i\sqrt{22} ni ayirish.
x=\frac{5+\sqrt{22}i}{2}
-20-4i\sqrt{22} ni -8 ga bo'lish.
x=\frac{-\sqrt{22}i+5}{2} x=\frac{5+\sqrt{22}i}{2}
Tenglama yechildi.
-4x^{2}+20x-47=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-4x^{2}+20x-47-\left(-47\right)=-\left(-47\right)
47 ni tenglamaning ikkala tarafiga qo'shish.
-4x^{2}+20x=-\left(-47\right)
O‘zidan -47 ayirilsa 0 qoladi.
-4x^{2}+20x=47
0 dan -47 ni ayirish.
\frac{-4x^{2}+20x}{-4}=\frac{47}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{20}{-4}x=\frac{47}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{47}{-4}
20 ni -4 ga bo'lish.
x^{2}-5x=-\frac{47}{4}
47 ni -4 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{47}{4}+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=\frac{-47+25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{11}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{47}{4} ni \frac{25}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{2}\right)^{2}=-\frac{11}{2}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{11}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{22}i}{2} x-\frac{5}{2}=-\frac{\sqrt{22}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{22}i}{2} x=\frac{-\sqrt{22}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.