Omil
-\left(x+1\right)\left(3x+1\right)
Baholash
-\left(x+1\right)\left(3x+1\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-4 ab=-3\left(-1\right)=3
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda -3x^{2}+ax+bx-1 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-1 b=-3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. Faqat bundan juftlik tizim yechimidir.
\left(-3x^{2}-x\right)+\left(-3x-1\right)
-3x^{2}-4x-1 ni \left(-3x^{2}-x\right)+\left(-3x-1\right) sifatida qaytadan yozish.
-x\left(3x+1\right)-\left(3x+1\right)
Birinchi guruhda -x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(3x+1\right)\left(-x-1\right)
Distributiv funktsiyasidan foydalangan holda 3x+1 umumiy terminini chiqaring.
-3x^{2}-4x-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+12\left(-1\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\left(-3\right)}
12 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\left(-3\right)}
16 ni -12 ga qo'shish.
x=\frac{-\left(-4\right)±2}{2\left(-3\right)}
4 ning kvadrat ildizini chiqarish.
x=\frac{4±2}{2\left(-3\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{6}{-6}
x=\frac{4±2}{-6} tenglamasini yeching, bunda ± musbat. 4 ni 2 ga qo'shish.
x=-1
6 ni -6 ga bo'lish.
x=\frac{2}{-6}
x=\frac{4±2}{-6} tenglamasini yeching, bunda ± manfiy. 4 dan 2 ni ayirish.
x=-\frac{1}{3}
\frac{2}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-3x^{2}-4x-1=-3\left(x-\left(-1\right)\right)\left(x-\left(-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1 ga va x_{2} uchun -\frac{1}{3} ga bo‘ling.
-3x^{2}-4x-1=-3\left(x+1\right)\left(x+\frac{1}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
-3x^{2}-4x-1=-3\left(x+1\right)\times \frac{-3x-1}{-3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{3} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
-3x^{2}-4x-1=\left(x+1\right)\left(-3x-1\right)
-3 va 3 ichida eng katta umumiy 3 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}