Omil
-3\left(x+1\right)\left(x+12\right)
Baholash
-3\left(x+1\right)\left(x+12\right)
Grafik
Viktorina
Polynomial
-3 { x }^{ 2 } -39x-36
Baham ko'rish
Klipbordga nusxa olish
3\left(-x^{2}-13x-12\right)
3 omili.
a+b=-13 ab=-\left(-12\right)=12
Hisoblang: -x^{2}-13x-12. Ifodani guruhlash orqali faktorlang. Avvalo, ifoda -x^{2}+ax+bx-12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-12 -2,-6 -3,-4
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-12=-13 -2-6=-8 -3-4=-7
Har bir juftlik yigʻindisini hisoblang.
a=-1 b=-12
Yechim – -13 yigʻindisini beruvchi juftlik.
\left(-x^{2}-x\right)+\left(-12x-12\right)
-x^{2}-13x-12 ni \left(-x^{2}-x\right)+\left(-12x-12\right) sifatida qaytadan yozish.
x\left(-x-1\right)+12\left(-x-1\right)
Birinchi guruhda x ni va ikkinchi guruhda 12 ni faktordan chiqaring.
\left(-x-1\right)\left(x+12\right)
Distributiv funktsiyasidan foydalangan holda -x-1 umumiy terminini chiqaring.
3\left(-x-1\right)\left(x+12\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
-3x^{2}-39x-36=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\left(-3\right)\left(-36\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-39\right)±\sqrt{1521-4\left(-3\right)\left(-36\right)}}{2\left(-3\right)}
-39 kvadratini chiqarish.
x=\frac{-\left(-39\right)±\sqrt{1521+12\left(-36\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-39\right)±\sqrt{1521-432}}{2\left(-3\right)}
12 ni -36 marotabaga ko'paytirish.
x=\frac{-\left(-39\right)±\sqrt{1089}}{2\left(-3\right)}
1521 ni -432 ga qo'shish.
x=\frac{-\left(-39\right)±33}{2\left(-3\right)}
1089 ning kvadrat ildizini chiqarish.
x=\frac{39±33}{2\left(-3\right)}
-39 ning teskarisi 39 ga teng.
x=\frac{39±33}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{72}{-6}
x=\frac{39±33}{-6} tenglamasini yeching, bunda ± musbat. 39 ni 33 ga qo'shish.
x=-12
72 ni -6 ga bo'lish.
x=\frac{6}{-6}
x=\frac{39±33}{-6} tenglamasini yeching, bunda ± manfiy. 39 dan 33 ni ayirish.
x=-1
6 ni -6 ga bo'lish.
-3x^{2}-39x-36=-3\left(x-\left(-12\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -12 ga va x_{2} uchun -1 ga bo‘ling.
-3x^{2}-39x-36=-3\left(x+12\right)\left(x+1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}