Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(-3x+2\right)=0
x omili.
x=0 x=\frac{2}{3}
Tenglamani yechish uchun x=0 va -3x+2=0 ni yeching.
-3x^{2}+2x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 2 ni b va 0 ni c bilan almashtiring.
x=\frac{-2±2}{2\left(-3\right)}
2^{2} ning kvadrat ildizini chiqarish.
x=\frac{-2±2}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{0}{-6}
x=\frac{-2±2}{-6} tenglamasini yeching, bunda ± musbat. -2 ni 2 ga qo'shish.
x=0
0 ni -6 ga bo'lish.
x=-\frac{4}{-6}
x=\frac{-2±2}{-6} tenglamasini yeching, bunda ± manfiy. -2 dan 2 ni ayirish.
x=\frac{2}{3}
\frac{-4}{-6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=\frac{2}{3}
Tenglama yechildi.
-3x^{2}+2x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=\frac{0}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{2}{-3}x=\frac{0}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=\frac{0}{-3}
2 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x=0
0 ni -3 ga bo'lish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Qisqartirish.
x=\frac{2}{3} x=0
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.