Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-3x^{2}+16x+128=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{16^{2}-4\left(-3\right)\times 128}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 16 ni b va 128 ni c bilan almashtiring.
x=\frac{-16±\sqrt{256-4\left(-3\right)\times 128}}{2\left(-3\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+12\times 128}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256+1536}}{2\left(-3\right)}
12 ni 128 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{1792}}{2\left(-3\right)}
256 ni 1536 ga qo'shish.
x=\frac{-16±16\sqrt{7}}{2\left(-3\right)}
1792 ning kvadrat ildizini chiqarish.
x=\frac{-16±16\sqrt{7}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{16\sqrt{7}-16}{-6}
x=\frac{-16±16\sqrt{7}}{-6} tenglamasini yeching, bunda ± musbat. -16 ni 16\sqrt{7} ga qo'shish.
x=\frac{8-8\sqrt{7}}{3}
-16+16\sqrt{7} ni -6 ga bo'lish.
x=\frac{-16\sqrt{7}-16}{-6}
x=\frac{-16±16\sqrt{7}}{-6} tenglamasini yeching, bunda ± manfiy. -16 dan 16\sqrt{7} ni ayirish.
x=\frac{8\sqrt{7}+8}{3}
-16-16\sqrt{7} ni -6 ga bo'lish.
x=\frac{8-8\sqrt{7}}{3} x=\frac{8\sqrt{7}+8}{3}
Tenglama yechildi.
-3x^{2}+16x+128=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-3x^{2}+16x+128-128=-128
Tenglamaning ikkala tarafidan 128 ni ayirish.
-3x^{2}+16x=-128
O‘zidan 128 ayirilsa 0 qoladi.
\frac{-3x^{2}+16x}{-3}=-\frac{128}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{16}{-3}x=-\frac{128}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{16}{3}x=-\frac{128}{-3}
16 ni -3 ga bo'lish.
x^{2}-\frac{16}{3}x=\frac{128}{3}
-128 ni -3 ga bo'lish.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=\frac{128}{3}+\left(-\frac{8}{3}\right)^{2}
-\frac{16}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{8}{3} olish uchun. Keyin, -\frac{8}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{128}{3}+\frac{64}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{8}{3} kvadratini chiqarish.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{448}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{128}{3} ni \frac{64}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{8}{3}\right)^{2}=\frac{448}{9}
x^{2}-\frac{16}{3}x+\frac{64}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{448}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{8}{3}=\frac{8\sqrt{7}}{3} x-\frac{8}{3}=-\frac{8\sqrt{7}}{3}
Qisqartirish.
x=\frac{8\sqrt{7}+8}{3} x=\frac{8-8\sqrt{7}}{3}
\frac{8}{3} ni tenglamaning ikkala tarafiga qo'shish.