Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-20x^{2}+66x-20=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-66±\sqrt{66^{2}-4\left(-20\right)\left(-20\right)}}{2\left(-20\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-66±\sqrt{4356-4\left(-20\right)\left(-20\right)}}{2\left(-20\right)}
66 kvadratini chiqarish.
x=\frac{-66±\sqrt{4356+80\left(-20\right)}}{2\left(-20\right)}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-66±\sqrt{4356-1600}}{2\left(-20\right)}
80 ni -20 marotabaga ko'paytirish.
x=\frac{-66±\sqrt{2756}}{2\left(-20\right)}
4356 ni -1600 ga qo'shish.
x=\frac{-66±2\sqrt{689}}{2\left(-20\right)}
2756 ning kvadrat ildizini chiqarish.
x=\frac{-66±2\sqrt{689}}{-40}
2 ni -20 marotabaga ko'paytirish.
x=\frac{2\sqrt{689}-66}{-40}
x=\frac{-66±2\sqrt{689}}{-40} tenglamasini yeching, bunda ± musbat. -66 ni 2\sqrt{689} ga qo'shish.
x=\frac{33-\sqrt{689}}{20}
-66+2\sqrt{689} ni -40 ga bo'lish.
x=\frac{-2\sqrt{689}-66}{-40}
x=\frac{-66±2\sqrt{689}}{-40} tenglamasini yeching, bunda ± manfiy. -66 dan 2\sqrt{689} ni ayirish.
x=\frac{\sqrt{689}+33}{20}
-66-2\sqrt{689} ni -40 ga bo'lish.
-20x^{2}+66x-20=-20\left(x-\frac{33-\sqrt{689}}{20}\right)\left(x-\frac{\sqrt{689}+33}{20}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{33-\sqrt{689}}{20} ga va x_{2} uchun \frac{33+\sqrt{689}}{20} ga bo‘ling.