Baholash
-\frac{510400}{3}\approx -170133,333333333
Omil
-\frac{510400}{3} = -170133\frac{1}{3} = -170133,33333333334
Viktorina
Arithmetic
5xshash muammolar:
-288 \times \frac{ 35 }{ 72 } +(10625- \frac{ 5 }{ 12 } ) \times (-16)=
Baham ko'rish
Klipbordga nusxa olish
\frac{-288\times 35}{72}+\left(10625-\frac{5}{12}\right)\left(-16\right)
-288\times \frac{35}{72} ni yagona kasrga aylantiring.
\frac{-10080}{72}+\left(10625-\frac{5}{12}\right)\left(-16\right)
-10080 hosil qilish uchun -288 va 35 ni ko'paytirish.
-140+\left(10625-\frac{5}{12}\right)\left(-16\right)
-140 ni olish uchun -10080 ni 72 ga bo‘ling.
-140+\left(\frac{127500}{12}-\frac{5}{12}\right)\left(-16\right)
10625 ni \frac{127500}{12} kasrga o‘giring.
-140+\frac{127500-5}{12}\left(-16\right)
\frac{127500}{12} va \frac{5}{12} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-140+\frac{127495}{12}\left(-16\right)
127495 olish uchun 127500 dan 5 ni ayirish.
-140+\frac{127495\left(-16\right)}{12}
\frac{127495}{12}\left(-16\right) ni yagona kasrga aylantiring.
-140+\frac{-2039920}{12}
-2039920 hosil qilish uchun 127495 va -16 ni ko'paytirish.
-140-\frac{509980}{3}
\frac{-2039920}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
-\frac{420}{3}-\frac{509980}{3}
-140 ni -\frac{420}{3} kasrga o‘giring.
\frac{-420-509980}{3}
-\frac{420}{3} va \frac{509980}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{510400}{3}
-510400 olish uchun -420 dan 509980 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}