Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(-2x-\frac{3}{2}\right)=0
x omili.
x=0 x=-\frac{3}{4}
Tenglamani yechish uchun x=0 va -2x-\frac{3}{2}=0 ni yeching.
-2x^{2}-\frac{3}{2}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -\frac{3}{2} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{3}{2}}{2\left(-2\right)}
\left(-\frac{3}{2}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{2}±\frac{3}{2}}{2\left(-2\right)}
-\frac{3}{2} ning teskarisi \frac{3}{2} ga teng.
x=\frac{\frac{3}{2}±\frac{3}{2}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{3}{-4}
x=\frac{\frac{3}{2}±\frac{3}{2}}{-4} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{3}{4}
3 ni -4 ga bo'lish.
x=\frac{0}{-4}
x=\frac{\frac{3}{2}±\frac{3}{2}}{-4} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{3}{2} ni \frac{3}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -4 ga bo'lish.
x=-\frac{3}{4} x=0
Tenglama yechildi.
-2x^{2}-\frac{3}{2}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}-\frac{3}{2}x}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{\frac{3}{2}}{-2}\right)x=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{4}x=\frac{0}{-2}
-\frac{3}{2} ni -2 ga bo'lish.
x^{2}+\frac{3}{4}x=0
0 ni -2 ga bo'lish.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\left(\frac{3}{8}\right)^{2}
\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{8} olish uchun. Keyin, \frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{8} kvadratini chiqarish.
\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}
x^{2}+\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{8}=\frac{3}{8} x+\frac{3}{8}=-\frac{3}{8}
Qisqartirish.
x=0 x=-\frac{3}{4}
Tenglamaning ikkala tarafidan \frac{3}{8} ni ayirish.