Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 1 ni b va -3 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+8\left(-3\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-24}}{2\left(-2\right)}
8 ni -3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-23}}{2\left(-2\right)}
1 ni -24 ga qo'shish.
x=\frac{-1±\sqrt{23}i}{2\left(-2\right)}
-23 ning kvadrat ildizini chiqarish.
x=\frac{-1±\sqrt{23}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-1+\sqrt{23}i}{-4}
x=\frac{-1±\sqrt{23}i}{-4} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i+1}{4}
-1+i\sqrt{23} ni -4 ga bo'lish.
x=\frac{-\sqrt{23}i-1}{-4}
x=\frac{-1±\sqrt{23}i}{-4} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{23} ni ayirish.
x=\frac{1+\sqrt{23}i}{4}
-1-i\sqrt{23} ni -4 ga bo'lish.
x=\frac{-\sqrt{23}i+1}{4} x=\frac{1+\sqrt{23}i}{4}
Tenglama yechildi.
-2x^{2}+x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-2x^{2}+x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
-2x^{2}+x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
-2x^{2}+x=3
0 dan -3 ni ayirish.
\frac{-2x^{2}+x}{-2}=\frac{3}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{1}{-2}x=\frac{3}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=\frac{3}{-2}
1 ni -2 ga bo'lish.
x^{2}-\frac{1}{2}x=-\frac{3}{2}
3 ni -2 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{3}{2}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{23}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=-\frac{23}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{23}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{23}i}{4} x-\frac{1}{4}=-\frac{\sqrt{23}i}{4}
Qisqartirish.
x=\frac{1+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i+1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.