Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+17x+39=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-17±\sqrt{17^{2}-4\left(-2\right)\times 39}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-17±\sqrt{289-4\left(-2\right)\times 39}}{2\left(-2\right)}
17 kvadratini chiqarish.
x=\frac{-17±\sqrt{289+8\times 39}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-17±\sqrt{289+312}}{2\left(-2\right)}
8 ni 39 marotabaga ko'paytirish.
x=\frac{-17±\sqrt{601}}{2\left(-2\right)}
289 ni 312 ga qo'shish.
x=\frac{-17±\sqrt{601}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{\sqrt{601}-17}{-4}
x=\frac{-17±\sqrt{601}}{-4} tenglamasini yeching, bunda ± musbat. -17 ni \sqrt{601} ga qo'shish.
x=\frac{17-\sqrt{601}}{4}
-17+\sqrt{601} ni -4 ga bo'lish.
x=\frac{-\sqrt{601}-17}{-4}
x=\frac{-17±\sqrt{601}}{-4} tenglamasini yeching, bunda ± manfiy. -17 dan \sqrt{601} ni ayirish.
x=\frac{\sqrt{601}+17}{4}
-17-\sqrt{601} ni -4 ga bo'lish.
-2x^{2}+17x+39=-2\left(x-\frac{17-\sqrt{601}}{4}\right)\left(x-\frac{\sqrt{601}+17}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{17-\sqrt{601}}{4} ga va x_{2} uchun \frac{17+\sqrt{601}}{4} ga bo‘ling.