x uchun yechish
x=10
x=40
Grafik
Baham ko'rish
Klipbordga nusxa olish
-2x^{2}+100x-800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}-4\left(-2\right)\left(-800\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 100 ni b va -800 ni c bilan almashtiring.
x=\frac{-100±\sqrt{10000-4\left(-2\right)\left(-800\right)}}{2\left(-2\right)}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+8\left(-800\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{10000-6400}}{2\left(-2\right)}
8 ni -800 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{3600}}{2\left(-2\right)}
10000 ni -6400 ga qo'shish.
x=\frac{-100±60}{2\left(-2\right)}
3600 ning kvadrat ildizini chiqarish.
x=\frac{-100±60}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{40}{-4}
x=\frac{-100±60}{-4} tenglamasini yeching, bunda ± musbat. -100 ni 60 ga qo'shish.
x=10
-40 ni -4 ga bo'lish.
x=-\frac{160}{-4}
x=\frac{-100±60}{-4} tenglamasini yeching, bunda ± manfiy. -100 dan 60 ni ayirish.
x=40
-160 ni -4 ga bo'lish.
x=10 x=40
Tenglama yechildi.
-2x^{2}+100x-800=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-2x^{2}+100x-800-\left(-800\right)=-\left(-800\right)
800 ni tenglamaning ikkala tarafiga qo'shish.
-2x^{2}+100x=-\left(-800\right)
O‘zidan -800 ayirilsa 0 qoladi.
-2x^{2}+100x=800
0 dan -800 ni ayirish.
\frac{-2x^{2}+100x}{-2}=\frac{800}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{100}{-2}x=\frac{800}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-50x=\frac{800}{-2}
100 ni -2 ga bo'lish.
x^{2}-50x=-400
800 ni -2 ga bo'lish.
x^{2}-50x+\left(-25\right)^{2}=-400+\left(-25\right)^{2}
-50 ni bo‘lish, x shartining koeffitsienti, 2 ga -25 olish uchun. Keyin, -25 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-50x+625=-400+625
-25 kvadratini chiqarish.
x^{2}-50x+625=225
-400 ni 625 ga qo'shish.
\left(x-25\right)^{2}=225
x^{2}-50x+625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-25\right)^{2}}=\sqrt{225}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-25=15 x-25=-15
Qisqartirish.
x=40 x=10
25 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}