Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2a^{2}-2a+6=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 6}}{2\left(-2\right)}
-2 kvadratini chiqarish.
a=\frac{-\left(-2\right)±\sqrt{4+8\times 6}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
a=\frac{-\left(-2\right)±\sqrt{4+48}}{2\left(-2\right)}
8 ni 6 marotabaga ko'paytirish.
a=\frac{-\left(-2\right)±\sqrt{52}}{2\left(-2\right)}
4 ni 48 ga qo'shish.
a=\frac{-\left(-2\right)±2\sqrt{13}}{2\left(-2\right)}
52 ning kvadrat ildizini chiqarish.
a=\frac{2±2\sqrt{13}}{2\left(-2\right)}
-2 ning teskarisi 2 ga teng.
a=\frac{2±2\sqrt{13}}{-4}
2 ni -2 marotabaga ko'paytirish.
a=\frac{2\sqrt{13}+2}{-4}
a=\frac{2±2\sqrt{13}}{-4} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{13} ga qo'shish.
a=\frac{-\sqrt{13}-1}{2}
2+2\sqrt{13} ni -4 ga bo'lish.
a=\frac{2-2\sqrt{13}}{-4}
a=\frac{2±2\sqrt{13}}{-4} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{13} ni ayirish.
a=\frac{\sqrt{13}-1}{2}
2-2\sqrt{13} ni -4 ga bo'lish.
-2a^{2}-2a+6=-2\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1-\sqrt{13}}{2} ga va x_{2} uchun \frac{-1+\sqrt{13}}{2} ga bo‘ling.