Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-16x^{2}+64x-60=60
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-16x^{2}+64x-60-60=60-60
Tenglamaning ikkala tarafidan 60 ni ayirish.
-16x^{2}+64x-60-60=0
O‘zidan 60 ayirilsa 0 qoladi.
-16x^{2}+64x-120=0
-60 dan 60 ni ayirish.
x=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -16 ni a, 64 ni b va -120 ni c bilan almashtiring.
x=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
64 kvadratini chiqarish.
x=\frac{-64±\sqrt{4096+64\left(-120\right)}}{2\left(-16\right)}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{4096-7680}}{2\left(-16\right)}
64 ni -120 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{-3584}}{2\left(-16\right)}
4096 ni -7680 ga qo'shish.
x=\frac{-64±16\sqrt{14}i}{2\left(-16\right)}
-3584 ning kvadrat ildizini chiqarish.
x=\frac{-64±16\sqrt{14}i}{-32}
2 ni -16 marotabaga ko'paytirish.
x=\frac{-64+16\sqrt{14}i}{-32}
x=\frac{-64±16\sqrt{14}i}{-32} tenglamasini yeching, bunda ± musbat. -64 ni 16i\sqrt{14} ga qo'shish.
x=-\frac{\sqrt{14}i}{2}+2
-64+16i\sqrt{14} ni -32 ga bo'lish.
x=\frac{-16\sqrt{14}i-64}{-32}
x=\frac{-64±16\sqrt{14}i}{-32} tenglamasini yeching, bunda ± manfiy. -64 dan 16i\sqrt{14} ni ayirish.
x=\frac{\sqrt{14}i}{2}+2
-64-16i\sqrt{14} ni -32 ga bo'lish.
x=-\frac{\sqrt{14}i}{2}+2 x=\frac{\sqrt{14}i}{2}+2
Tenglama yechildi.
-16x^{2}+64x-60=60
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-16x^{2}+64x-60-\left(-60\right)=60-\left(-60\right)
60 ni tenglamaning ikkala tarafiga qo'shish.
-16x^{2}+64x=60-\left(-60\right)
O‘zidan -60 ayirilsa 0 qoladi.
-16x^{2}+64x=120
60 dan -60 ni ayirish.
\frac{-16x^{2}+64x}{-16}=\frac{120}{-16}
Ikki tarafini -16 ga bo‘ling.
x^{2}+\frac{64}{-16}x=\frac{120}{-16}
-16 ga bo'lish -16 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{120}{-16}
64 ni -16 ga bo'lish.
x^{2}-4x=-\frac{15}{2}
\frac{120}{-16} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-4x+\left(-2\right)^{2}=-\frac{15}{2}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-\frac{15}{2}+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-\frac{7}{2}
-\frac{15}{2} ni 4 ga qo'shish.
\left(x-2\right)^{2}=-\frac{7}{2}
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{7}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\frac{\sqrt{14}i}{2} x-2=-\frac{\sqrt{14}i}{2}
Qisqartirish.
x=\frac{\sqrt{14}i}{2}+2 x=-\frac{\sqrt{14}i}{2}+2
2 ni tenglamaning ikkala tarafiga qo'shish.