Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}=-2+1
1 ni ikki tarafga qo’shing.
-2x^{2}=-1
-1 olish uchun -2 va 1'ni qo'shing.
x^{2}=\frac{-1}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}=\frac{1}{2}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1}{-2} kasrini \frac{1}{2} ga soddalashtirish mumkin.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-1-2x^{2}+2=0
2 ni ikki tarafga qo’shing.
1-2x^{2}=0
1 olish uchun -1 va 2'ni qo'shing.
-2x^{2}+1=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 0 ni b va 1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-2\right)}}{2\left(-2\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{8}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{2}}{2\left(-2\right)}
8 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{2}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{\sqrt{2}}{2}
x=\frac{0±2\sqrt{2}}{-4} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{2}}{2}
x=\frac{0±2\sqrt{2}}{-4} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{2}}{2} x=\frac{\sqrt{2}}{2}
Tenglama yechildi.