Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

0x^{3}+15x^{2}-x-12
0 hosil qilish uchun 0 va 125 ni ko'paytirish.
0+15x^{2}-x-12
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
-12+15x^{2}-x
-12 olish uchun 0 dan 12 ni ayirish.
factor(0x^{3}+15x^{2}-x-12)
0 hosil qilish uchun 0 va 125 ni ko'paytirish.
factor(0+15x^{2}-x-12)
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
factor(-12+15x^{2}-x)
-12 olish uchun 0 dan 12 ni ayirish.
15x^{2}-x-12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 15\left(-12\right)}}{2\times 15}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-60\left(-12\right)}}{2\times 15}
-4 ni 15 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+720}}{2\times 15}
-60 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{721}}{2\times 15}
1 ni 720 ga qo'shish.
x=\frac{1±\sqrt{721}}{2\times 15}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{721}}{30}
2 ni 15 marotabaga ko'paytirish.
x=\frac{\sqrt{721}+1}{30}
x=\frac{1±\sqrt{721}}{30} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{721} ga qo'shish.
x=\frac{1-\sqrt{721}}{30}
x=\frac{1±\sqrt{721}}{30} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{721} ni ayirish.
15x^{2}-x-12=15\left(x-\frac{\sqrt{721}+1}{30}\right)\left(x-\frac{1-\sqrt{721}}{30}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{721}}{30} ga va x_{2} uchun \frac{1-\sqrt{721}}{30} ga bo‘ling.