Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(-x-1\right)\left(-1\right)\left(x-1\right)=8
x+1 teskarisini topish uchun har birining teskarisini toping.
\left(x+1\right)\left(x-1\right)=8
-x-1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1^{2}=8
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-1=8
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
x^{2}=8+1
1 ni ikki tarafga qo’shing.
x^{2}=9
9 olish uchun 8 va 1'ni qo'shing.
x=3 x=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(-x-1\right)\left(-1\right)\left(x-1\right)=8
x+1 teskarisini topish uchun har birining teskarisini toping.
\left(x+1\right)\left(x-1\right)=8
-x-1 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1^{2}=8
Hisoblang: \left(x+1\right)\left(x-1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-1=8
2 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
x^{2}-1-8=0
Ikkala tarafdan 8 ni ayirish.
x^{2}-9=0
-9 olish uchun -1 dan 8 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-9\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{0±6}{2}
36 ning kvadrat ildizini chiqarish.
x=3
x=\frac{0±6}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2 ga bo'lish.
x=-3
x=\frac{0±6}{2} tenglamasini yeching, bunda ± manfiy. -6 ni 2 ga bo'lish.
x=3 x=-3
Tenglama yechildi.