x uchun yechish (complex solution)
x=\frac{-\sqrt{3}i-1}{2}\approx -0,5-0,866025404i
x=\frac{-1+\sqrt{3}i}{2}\approx -0,5+0,866025404i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}-x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
1 ni -4 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
-3 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{3}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{1+\sqrt{3}i}{-2}
x=\frac{1±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i-1}{2}
1+i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i+1}{-2}
x=\frac{1±\sqrt{3}i}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{3} ni ayirish.
x=\frac{-1+\sqrt{3}i}{2}
1-i\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Tenglama yechildi.
-x^{2}-x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}-x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
-x^{2}-x=1
0 dan -1 ni ayirish.
\frac{-x^{2}-x}{-1}=\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{1}{-1}
-1 ni -1 ga bo'lish.
x^{2}+x=-1
1 ni -1 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}