x uchun yechish
x=2\sqrt{7}-4\approx 1,291502622
x=-2\sqrt{7}-4\approx -9,291502622
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}-8x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -8 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 12}}{2\left(-1\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 12}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+48}}{2\left(-1\right)}
4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{112}}{2\left(-1\right)}
64 ni 48 ga qo'shish.
x=\frac{-\left(-8\right)±4\sqrt{7}}{2\left(-1\right)}
112 ning kvadrat ildizini chiqarish.
x=\frac{8±4\sqrt{7}}{2\left(-1\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4\sqrt{7}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{7}+8}{-2}
x=\frac{8±4\sqrt{7}}{-2} tenglamasini yeching, bunda ± musbat. 8 ni 4\sqrt{7} ga qo'shish.
x=-2\sqrt{7}-4
8+4\sqrt{7} ni -2 ga bo'lish.
x=\frac{8-4\sqrt{7}}{-2}
x=\frac{8±4\sqrt{7}}{-2} tenglamasini yeching, bunda ± manfiy. 8 dan 4\sqrt{7} ni ayirish.
x=2\sqrt{7}-4
8-4\sqrt{7} ni -2 ga bo'lish.
x=-2\sqrt{7}-4 x=2\sqrt{7}-4
Tenglama yechildi.
-x^{2}-8x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-8x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-x^{2}-8x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{-x^{2}-8x}{-1}=-\frac{12}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{12}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+8x=-\frac{12}{-1}
-8 ni -1 ga bo'lish.
x^{2}+8x=12
-12 ni -1 ga bo'lish.
x^{2}+8x+4^{2}=12+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=12+16
4 kvadratini chiqarish.
x^{2}+8x+16=28
12 ni 16 ga qo'shish.
\left(x+4\right)^{2}=28
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{28}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=2\sqrt{7} x+4=-2\sqrt{7}
Qisqartirish.
x=2\sqrt{7}-4 x=-2\sqrt{7}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}