Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-8x+12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -8 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 12}}{2\left(-1\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 12}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+48}}{2\left(-1\right)}
4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{112}}{2\left(-1\right)}
64 ni 48 ga qo'shish.
x=\frac{-\left(-8\right)±4\sqrt{7}}{2\left(-1\right)}
112 ning kvadrat ildizini chiqarish.
x=\frac{8±4\sqrt{7}}{2\left(-1\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4\sqrt{7}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{7}+8}{-2}
x=\frac{8±4\sqrt{7}}{-2} tenglamasini yeching, bunda ± musbat. 8 ni 4\sqrt{7} ga qo'shish.
x=-2\sqrt{7}-4
8+4\sqrt{7} ni -2 ga bo'lish.
x=\frac{8-4\sqrt{7}}{-2}
x=\frac{8±4\sqrt{7}}{-2} tenglamasini yeching, bunda ± manfiy. 8 dan 4\sqrt{7} ni ayirish.
x=2\sqrt{7}-4
8-4\sqrt{7} ni -2 ga bo'lish.
x=-2\sqrt{7}-4 x=2\sqrt{7}-4
Tenglama yechildi.
-x^{2}-8x+12=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-8x+12-12=-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-x^{2}-8x=-12
O‘zidan 12 ayirilsa 0 qoladi.
\frac{-x^{2}-8x}{-1}=-\frac{12}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{12}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+8x=-\frac{12}{-1}
-8 ni -1 ga bo'lish.
x^{2}+8x=12
-12 ni -1 ga bo'lish.
x^{2}+8x+4^{2}=12+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=12+16
4 kvadratini chiqarish.
x^{2}+8x+16=28
12 ni 16 ga qo'shish.
\left(x+4\right)^{2}=28
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{28}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=2\sqrt{7} x+4=-2\sqrt{7}
Qisqartirish.
x=2\sqrt{7}-4 x=-2\sqrt{7}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.