Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-7x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\times 5}}{2\left(-1\right)}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{69}}{2\left(-1\right)}
49 ni 20 ga qo'shish.
x=\frac{7±\sqrt{69}}{2\left(-1\right)}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{69}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{69}+7}{-2}
x=\frac{7±\sqrt{69}}{-2} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{69} ga qo'shish.
x=\frac{-\sqrt{69}-7}{2}
7+\sqrt{69} ni -2 ga bo'lish.
x=\frac{7-\sqrt{69}}{-2}
x=\frac{7±\sqrt{69}}{-2} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{69} ni ayirish.
x=\frac{\sqrt{69}-7}{2}
7-\sqrt{69} ni -2 ga bo'lish.
-x^{2}-7x+5=-\left(x-\frac{-\sqrt{69}-7}{2}\right)\left(x-\frac{\sqrt{69}-7}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7-\sqrt{69}}{2} ga va x_{2} uchun \frac{-7+\sqrt{69}}{2} ga bo‘ling.