Omil
-\left(x+3\right)^{2}
Baholash
-\left(x+3\right)^{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-6 ab=-\left(-9\right)=9
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda -x^{2}+ax+bx-9 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-9 -3,-3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 9-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-9=-10 -3-3=-6
Har bir juftlik yigʻindisini hisoblang.
a=-3 b=-3
Yechim – -6 yigʻindisini beruvchi juftlik.
\left(-x^{2}-3x\right)+\left(-3x-9\right)
-x^{2}-6x-9 ni \left(-x^{2}-3x\right)+\left(-3x-9\right) sifatida qaytadan yozish.
-x\left(x+3\right)-3\left(x+3\right)
Birinchi guruhda -x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(x+3\right)\left(-x-3\right)
Distributiv funktsiyasidan foydalangan holda x+3 umumiy terminini chiqaring.
-x^{2}-6x-9=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4\left(-9\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-1\right)}
4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-1\right)}
36 ni -36 ga qo'shish.
x=\frac{-\left(-6\right)±0}{2\left(-1\right)}
0 ning kvadrat ildizini chiqarish.
x=\frac{6±0}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±0}{-2}
2 ni -1 marotabaga ko'paytirish.
-x^{2}-6x-9=-\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -3 ga va x_{2} uchun -3 ga bo‘ling.
-x^{2}-6x-9=-\left(x+3\right)\left(x+3\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}