x uchun yechish
x=-\frac{1}{2}=-0,5
x=-4
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}-5x+\frac{1}{2}x=2
\frac{1}{2}x ni ikki tarafga qo’shing.
-x^{2}-\frac{9}{2}x=2
-\frac{9}{2}x ni olish uchun -5x va \frac{1}{2}x ni birlashtirish.
-x^{2}-\frac{9}{2}x-2=0
Ikkala tarafdan 2 ni ayirish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\left(-\frac{9}{2}\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -\frac{9}{2} ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}+4\left(-2\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-8}}{2\left(-1\right)}
4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{49}{4}}}{2\left(-1\right)}
\frac{81}{4} ni -8 ga qo'shish.
x=\frac{-\left(-\frac{9}{2}\right)±\frac{7}{2}}{2\left(-1\right)}
\frac{49}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{2}±\frac{7}{2}}{2\left(-1\right)}
-\frac{9}{2} ning teskarisi \frac{9}{2} ga teng.
x=\frac{\frac{9}{2}±\frac{7}{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{8}{-2}
x=\frac{\frac{9}{2}±\frac{7}{2}}{-2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{2} ni \frac{7}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-4
8 ni -2 ga bo'lish.
x=\frac{1}{-2}
x=\frac{\frac{9}{2}±\frac{7}{2}}{-2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{7}{2} ni \frac{9}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-\frac{1}{2}
1 ni -2 ga bo'lish.
x=-4 x=-\frac{1}{2}
Tenglama yechildi.
-x^{2}-5x+\frac{1}{2}x=2
\frac{1}{2}x ni ikki tarafga qo’shing.
-x^{2}-\frac{9}{2}x=2
-\frac{9}{2}x ni olish uchun -5x va \frac{1}{2}x ni birlashtirish.
\frac{-x^{2}-\frac{9}{2}x}{-1}=\frac{2}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{\frac{9}{2}}{-1}\right)x=\frac{2}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{9}{2}x=\frac{2}{-1}
-\frac{9}{2} ni -1 ga bo'lish.
x^{2}+\frac{9}{2}x=-2
2 ni -1 ga bo'lish.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-2+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
-2 ni \frac{81}{16} ga qo'shish.
\left(x+\frac{9}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{9}{2}x+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{4}=\frac{7}{4} x+\frac{9}{4}=-\frac{7}{4}
Qisqartirish.
x=-\frac{1}{2} x=-4
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}