Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-4x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-2\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-8}}{2\left(-1\right)}
4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{8}}{2\left(-1\right)}
16 ni -8 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{2}}{2\left(-1\right)}
8 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{2}}{2\left(-1\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{2}+4}{-2}
x=\frac{4±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{2} ga qo'shish.
x=-\sqrt{2}-2
4+2\sqrt{2} ni -2 ga bo'lish.
x=\frac{4-2\sqrt{2}}{-2}
x=\frac{4±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{2} ni ayirish.
x=\sqrt{2}-2
4-2\sqrt{2} ni -2 ga bo'lish.
-x^{2}-4x-2=-\left(x-\left(-\sqrt{2}-2\right)\right)\left(x-\left(\sqrt{2}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2-\sqrt{2} ga va x_{2} uchun -2+\sqrt{2} ga bo‘ling.