Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-2x+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 4}}{2\left(-1\right)}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 4}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2\left(-1\right)}
4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{20}}{2\left(-1\right)}
4 ni 16 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2\left(-1\right)}
20 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{5}}{2\left(-1\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{5}+2}{-2}
x=\frac{2±2\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{5} ga qo'shish.
x=-\left(\sqrt{5}+1\right)
2+2\sqrt{5} ni -2 ga bo'lish.
x=\frac{2-2\sqrt{5}}{-2}
x=\frac{2±2\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{5} ni ayirish.
x=\sqrt{5}-1
2-2\sqrt{5} ni -2 ga bo'lish.
-x^{2}-2x+4=-\left(x-\left(-\left(\sqrt{5}+1\right)\right)\right)\left(x-\left(\sqrt{5}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\left(1+\sqrt{5}\right) ga va x_{2} uchun -1+\sqrt{5} ga bo‘ling.