x uchun yechish
x=-2
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}-2x+3=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-x^{2}-2x+3-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-x^{2}-2x+3-3=0
O‘zidan 3 ayirilsa 0 qoladi.
-x^{2}-2x=0
3 dan 3 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -2 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±2}{2\left(-1\right)}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2\left(-1\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4}{-2}
x=\frac{2±2}{-2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=-2
4 ni -2 ga bo'lish.
x=\frac{0}{-2}
x=\frac{2±2}{-2} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni -2 ga bo'lish.
x=-2 x=0
Tenglama yechildi.
-x^{2}-2x+3=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-2x+3-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-x^{2}-2x=3-3
O‘zidan 3 ayirilsa 0 qoladi.
-x^{2}-2x=0
3 dan 3 ni ayirish.
\frac{-x^{2}-2x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{0}{-1}
-2 ni -1 ga bo'lish.
x^{2}+2x=0
0 ni -1 ga bo'lish.
x^{2}+2x+1^{2}=1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=1
1 kvadratini chiqarish.
\left(x+1\right)^{2}=1
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=1 x+1=-1
Qisqartirish.
x=0 x=-2
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}