x uchun yechish (complex solution)
x=\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx 1,636697857i
x=-\frac{i\sqrt{2\left(\sqrt{337}-13\right)}}{2}\approx -0-1,636697857i
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3,959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3,959643908
x uchun yechish
x = -\frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx -3,959643908
x = \frac{\sqrt{2 {(\sqrt{337} + 13)}}}{2} \approx 3,959643908
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
-x^{2} ga x^{2}-13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
13 hosil qilish uchun -13 va -1 ni ko'paytirish.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
42 ni ikki tarafga qo’shing.
-x^{4}+13x^{2}+42=0
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 2 ni qo‘shib, 4 ni oling.
-t^{2}+13t+42=0
x^{2} uchun t ni almashtiring.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun -1 ni, b uchun 13 ni va c uchun 42 ni ayiring.
t=\frac{-13±\sqrt{337}}{-2}
Hisoblarni amalga oshiring.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
t=\frac{-13±\sqrt{337}}{-2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-i\sqrt{-\frac{13-\sqrt{337}}{2}} x=i\sqrt{-\frac{13-\sqrt{337}}{2}} x=-\sqrt{\frac{\sqrt{337}+13}{2}} x=\sqrt{\frac{\sqrt{337}+13}{2}}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
\left(-x^{2}\right)x^{2}-13\left(-x^{2}\right)=-42
-x^{2} ga x^{2}-13 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(-x^{2}\right)x^{2}+13x^{2}=-42
13 hosil qilish uchun -13 va -1 ni ko'paytirish.
\left(-x^{2}\right)x^{2}+13x^{2}+42=0
42 ni ikki tarafga qo’shing.
-x^{4}+13x^{2}+42=0
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 2 ni qo‘shib, 4 ni oling.
-t^{2}+13t+42=0
x^{2} uchun t ni almashtiring.
t=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 42}}{-2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun -1 ni, b uchun 13 ni va c uchun 42 ni ayiring.
t=\frac{-13±\sqrt{337}}{-2}
Hisoblarni amalga oshiring.
t=\frac{13-\sqrt{337}}{2} t=\frac{\sqrt{337}+13}{2}
t=\frac{-13±\sqrt{337}}{-2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\frac{\sqrt{2\sqrt{337}+26}}{2} x=-\frac{\sqrt{2\sqrt{337}+26}}{2}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}