Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+8x+47=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 47}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 8 ni b va 47 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 47}}{2\left(-1\right)}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64+4\times 47}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+188}}{2\left(-1\right)}
4 ni 47 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{252}}{2\left(-1\right)}
64 ni 188 ga qo'shish.
x=\frac{-8±6\sqrt{7}}{2\left(-1\right)}
252 ning kvadrat ildizini chiqarish.
x=\frac{-8±6\sqrt{7}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{6\sqrt{7}-8}{-2}
x=\frac{-8±6\sqrt{7}}{-2} tenglamasini yeching, bunda ± musbat. -8 ni 6\sqrt{7} ga qo'shish.
x=4-3\sqrt{7}
-8+6\sqrt{7} ni -2 ga bo'lish.
x=\frac{-6\sqrt{7}-8}{-2}
x=\frac{-8±6\sqrt{7}}{-2} tenglamasini yeching, bunda ± manfiy. -8 dan 6\sqrt{7} ni ayirish.
x=3\sqrt{7}+4
-8-6\sqrt{7} ni -2 ga bo'lish.
x=4-3\sqrt{7} x=3\sqrt{7}+4
Tenglama yechildi.
-x^{2}+8x+47=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+8x+47-47=-47
Tenglamaning ikkala tarafidan 47 ni ayirish.
-x^{2}+8x=-47
O‘zidan 47 ayirilsa 0 qoladi.
\frac{-x^{2}+8x}{-1}=-\frac{47}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{8}{-1}x=-\frac{47}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-8x=-\frac{47}{-1}
8 ni -1 ga bo'lish.
x^{2}-8x=47
-47 ni -1 ga bo'lish.
x^{2}-8x+\left(-4\right)^{2}=47+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=47+16
-4 kvadratini chiqarish.
x^{2}-8x+16=63
47 ni 16 ga qo'shish.
\left(x-4\right)^{2}=63
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{63}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=3\sqrt{7} x-4=-3\sqrt{7}
Qisqartirish.
x=3\sqrt{7}+4 x=4-3\sqrt{7}
4 ni tenglamaning ikkala tarafiga qo'shish.