x uchun yechish (complex solution)
x=2-5i
x=2+5i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+4x-29=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-29\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va -29 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-29\right)}}{2\left(-1\right)}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16+4\left(-29\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16-116}}{2\left(-1\right)}
4 ni -29 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-100}}{2\left(-1\right)}
16 ni -116 ga qo'shish.
x=\frac{-4±10i}{2\left(-1\right)}
-100 ning kvadrat ildizini chiqarish.
x=\frac{-4±10i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-4+10i}{-2}
x=\frac{-4±10i}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 10i ga qo'shish.
x=2-5i
-4+10i ni -2 ga bo'lish.
x=\frac{-4-10i}{-2}
x=\frac{-4±10i}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 10i ni ayirish.
x=2+5i
-4-10i ni -2 ga bo'lish.
x=2-5i x=2+5i
Tenglama yechildi.
-x^{2}+4x-29=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+4x-29-\left(-29\right)=-\left(-29\right)
29 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}+4x=-\left(-29\right)
O‘zidan -29 ayirilsa 0 qoladi.
-x^{2}+4x=29
0 dan -29 ni ayirish.
\frac{-x^{2}+4x}{-1}=\frac{29}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{4}{-1}x=\frac{29}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{29}{-1}
4 ni -1 ga bo'lish.
x^{2}-4x=-29
29 ni -1 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=-29+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-29+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-25
-29 ni 4 ga qo'shish.
\left(x-2\right)^{2}=-25
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=5i x-2=-5i
Qisqartirish.
x=2+5i x=2-5i
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}