Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+2x=\frac{1}{4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-x^{2}+2x-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
-x^{2}+2x-\frac{1}{4}=0
O‘zidan \frac{1}{4} ayirilsa 0 qoladi.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 2 ni b va -\frac{1}{4} ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+4\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-1}}{2\left(-1\right)}
4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-2±\sqrt{3}}{2\left(-1\right)}
4 ni -1 ga qo'shish.
x=\frac{-2±\sqrt{3}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{3}-2}{-2}
x=\frac{-2±\sqrt{3}}{-2} tenglamasini yeching, bunda ± musbat. -2 ni \sqrt{3} ga qo'shish.
x=-\frac{\sqrt{3}}{2}+1
-2+\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}-2}{-2}
x=\frac{-2±\sqrt{3}}{-2} tenglamasini yeching, bunda ± manfiy. -2 dan \sqrt{3} ni ayirish.
x=\frac{\sqrt{3}}{2}+1
-2-\sqrt{3} ni -2 ga bo'lish.
x=-\frac{\sqrt{3}}{2}+1 x=\frac{\sqrt{3}}{2}+1
Tenglama yechildi.
-x^{2}+2x=\frac{1}{4}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=\frac{\frac{1}{4}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{2}{-1}x=\frac{\frac{1}{4}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{\frac{1}{4}}{-1}
2 ni -1 ga bo'lish.
x^{2}-2x=-\frac{1}{4}
\frac{1}{4} ni -1 ga bo'lish.
x^{2}-2x+1=-\frac{1}{4}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{3}{4}
-\frac{1}{4} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{3}{4}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{3}}{2} x-1=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}}{2}+1 x=-\frac{\sqrt{3}}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.