x uchun yechish
x=\frac{\sqrt{3}}{2}+1\approx 1,866025404
x=-\frac{\sqrt{3}}{2}+1\approx 0,133974596
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+2x=\frac{1}{4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-x^{2}+2x-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
-x^{2}+2x-\frac{1}{4}=0
O‘zidan \frac{1}{4} ayirilsa 0 qoladi.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 2 ni b va -\frac{1}{4} ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+4\left(-\frac{1}{4}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-1}}{2\left(-1\right)}
4 ni -\frac{1}{4} marotabaga ko'paytirish.
x=\frac{-2±\sqrt{3}}{2\left(-1\right)}
4 ni -1 ga qo'shish.
x=\frac{-2±\sqrt{3}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{3}-2}{-2}
x=\frac{-2±\sqrt{3}}{-2} tenglamasini yeching, bunda ± musbat. -2 ni \sqrt{3} ga qo'shish.
x=-\frac{\sqrt{3}}{2}+1
-2+\sqrt{3} ni -2 ga bo'lish.
x=\frac{-\sqrt{3}-2}{-2}
x=\frac{-2±\sqrt{3}}{-2} tenglamasini yeching, bunda ± manfiy. -2 dan \sqrt{3} ni ayirish.
x=\frac{\sqrt{3}}{2}+1
-2-\sqrt{3} ni -2 ga bo'lish.
x=-\frac{\sqrt{3}}{2}+1 x=\frac{\sqrt{3}}{2}+1
Tenglama yechildi.
-x^{2}+2x=\frac{1}{4}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=\frac{\frac{1}{4}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{2}{-1}x=\frac{\frac{1}{4}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{\frac{1}{4}}{-1}
2 ni -1 ga bo'lish.
x^{2}-2x=-\frac{1}{4}
\frac{1}{4} ni -1 ga bo'lish.
x^{2}-2x+1=-\frac{1}{4}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{3}{4}
-\frac{1}{4} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{3}{4}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{3}}{2} x-1=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}}{2}+1 x=-\frac{\sqrt{3}}{2}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}