x uchun yechish
x = \frac{3 \sqrt{2} + 3}{2} \approx 3,621320344
x=\frac{3-3\sqrt{2}}{2}\approx -0,621320344
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x+\frac{3}{4}+x^{2}=2x+3
x^{2} ni ikki tarafga qo’shing.
-x+\frac{3}{4}+x^{2}-2x=3
Ikkala tarafdan 2x ni ayirish.
-x+\frac{3}{4}+x^{2}-2x-3=0
Ikkala tarafdan 3 ni ayirish.
-x-\frac{9}{4}+x^{2}-2x=0
-\frac{9}{4} olish uchun \frac{3}{4} dan 3 ni ayirish.
-3x-\frac{9}{4}+x^{2}=0
-3x ni olish uchun -x va -2x ni birlashtirish.
x^{2}-3x-\frac{9}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{9}{4}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -\frac{9}{4} ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{9}{4}\right)}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+9}}{2}
-4 ni -\frac{9}{4} marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{18}}{2}
9 ni 9 ga qo'shish.
x=\frac{-\left(-3\right)±3\sqrt{2}}{2}
18 ning kvadrat ildizini chiqarish.
x=\frac{3±3\sqrt{2}}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{3\sqrt{2}+3}{2}
x=\frac{3±3\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 3 ni 3\sqrt{2} ga qo'shish.
x=\frac{3-3\sqrt{2}}{2}
x=\frac{3±3\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 3\sqrt{2} ni ayirish.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
Tenglama yechildi.
-x+\frac{3}{4}+x^{2}=2x+3
x^{2} ni ikki tarafga qo’shing.
-x+\frac{3}{4}+x^{2}-2x=3
Ikkala tarafdan 2x ni ayirish.
-x+x^{2}-2x=3-\frac{3}{4}
Ikkala tarafdan \frac{3}{4} ni ayirish.
-x+x^{2}-2x=\frac{9}{4}
\frac{9}{4} olish uchun 3 dan \frac{3}{4} ni ayirish.
-3x+x^{2}=\frac{9}{4}
-3x ni olish uchun -x va -2x ni birlashtirish.
x^{2}-3x=\frac{9}{4}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{9+9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{9}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{4} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{2}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3\sqrt{2}}{2} x-\frac{3}{2}=-\frac{3\sqrt{2}}{2}
Qisqartirish.
x=\frac{3\sqrt{2}+3}{2} x=\frac{3-3\sqrt{2}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}