d uchun yechish
\left\{\begin{matrix}d=-\frac{pz-2z+59}{p}\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }p=0\end{matrix}\right,
p uchun yechish
\left\{\begin{matrix}p=\frac{2z-59}{z+d}\text{, }&d\neq -z\\p\in \mathrm{R}\text{, }&z=\frac{59}{2}\text{ and }d=-\frac{59}{2}\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\left(-p\right)d+\left(-p\right)z=-2z+59
-p ga d+z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(-p\right)d=-2z+59-\left(-p\right)z
Ikkala tarafdan \left(-p\right)z ni ayirish.
-pd=-2z+59+pz
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
\left(-p\right)d=pz-2z+59
Tenglama standart shaklda.
\frac{\left(-p\right)d}{-p}=\frac{pz-2z+59}{-p}
Ikki tarafini -p ga bo‘ling.
d=\frac{pz-2z+59}{-p}
-p ga bo'lish -p ga ko'paytirishni bekor qiladi.
d=-\frac{pz-2z+59}{p}
zp-2z+59 ni -p ga bo'lish.
\left(-p\right)d+\left(-p\right)z=-2z+59
-p ga d+z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-pz-dp=-2z+59
Shartlarni qayta saralash.
\left(-z-d\right)p=-2z+59
p'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(-z-d\right)p=59-2z
Tenglama standart shaklda.
\frac{\left(-z-d\right)p}{-z-d}=\frac{59-2z}{-z-d}
Ikki tarafini -z-d ga bo‘ling.
p=\frac{59-2z}{-z-d}
-z-d ga bo'lish -z-d ga ko'paytirishni bekor qiladi.
p=-\frac{59-2z}{z+d}
-2z+59 ni -z-d ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}