Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(-n\right)n-3\left(-n\right)+1=4n-1
-n ga n-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(-n\right)n+3n+1=4n-1
3 hosil qilish uchun -3 va -1 ni ko'paytirish.
\left(-n\right)n+3n+1-4n=-1
Ikkala tarafdan 4n ni ayirish.
\left(-n\right)n-n+1=-1
-n ni olish uchun 3n va -4n ni birlashtirish.
\left(-n\right)n-n+1+1=0
1 ni ikki tarafga qo’shing.
\left(-n\right)n-n+2=0
2 olish uchun 1 va 1'ni qo'shing.
-n^{2}-n+2=0
n^{2} hosil qilish uchun n va n ni ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va 2 ni c bilan almashtiring.
n=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
4 ni 2 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
1 ni 8 ga qo'shish.
n=\frac{-\left(-1\right)±3}{2\left(-1\right)}
9 ning kvadrat ildizini chiqarish.
n=\frac{1±3}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
n=\frac{1±3}{-2}
2 ni -1 marotabaga ko'paytirish.
n=\frac{4}{-2}
n=\frac{1±3}{-2} tenglamasini yeching, bunda ± musbat. 1 ni 3 ga qo'shish.
n=-2
4 ni -2 ga bo'lish.
n=-\frac{2}{-2}
n=\frac{1±3}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan 3 ni ayirish.
n=1
-2 ni -2 ga bo'lish.
n=-2 n=1
Tenglama yechildi.
\left(-n\right)n-3\left(-n\right)+1=4n-1
-n ga n-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(-n\right)n+3n+1=4n-1
3 hosil qilish uchun -3 va -1 ni ko'paytirish.
\left(-n\right)n+3n+1-4n=-1
Ikkala tarafdan 4n ni ayirish.
\left(-n\right)n-n+1=-1
-n ni olish uchun 3n va -4n ni birlashtirish.
\left(-n\right)n-n=-1-1
Ikkala tarafdan 1 ni ayirish.
\left(-n\right)n-n=-2
-2 olish uchun -1 dan 1 ni ayirish.
-n^{2}-n=-2
n^{2} hosil qilish uchun n va n ni ko'paytirish.
\frac{-n^{2}-n}{-1}=-\frac{2}{-1}
Ikki tarafini -1 ga bo‘ling.
n^{2}+\left(-\frac{1}{-1}\right)n=-\frac{2}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
n^{2}+n=-\frac{2}{-1}
-1 ni -1 ga bo'lish.
n^{2}+n=2
-2 ni -1 ga bo'lish.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+n+\frac{1}{4}=2+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
n^{2}+n+\frac{1}{4}=\frac{9}{4}
2 ni \frac{1}{4} ga qo'shish.
\left(n+\frac{1}{2}\right)^{2}=\frac{9}{4}
n^{2}+n+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{1}{2}=\frac{3}{2} n+\frac{1}{2}=-\frac{3}{2}
Qisqartirish.
n=1 n=-2
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.