h uchun yechish
h=-2
h=1
Baham ko'rish
Klipbordga nusxa olish
-h^{2}+3h+1-4h=-1
Ikkala tarafdan 4h ni ayirish.
-h^{2}-h+1=-1
-h ni olish uchun 3h va -4h ni birlashtirish.
-h^{2}-h+1+1=0
1 ni ikki tarafga qo’shing.
-h^{2}-h+2=0
2 olish uchun 1 va 1'ni qo'shing.
a+b=-1 ab=-2=-2
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -h^{2}+ah+bh+2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=1 b=-2
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(-h^{2}+h\right)+\left(-2h+2\right)
-h^{2}-h+2 ni \left(-h^{2}+h\right)+\left(-2h+2\right) sifatida qaytadan yozish.
h\left(-h+1\right)+2\left(-h+1\right)
Birinchi guruhda h ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(-h+1\right)\left(h+2\right)
Distributiv funktsiyasidan foydalangan holda -h+1 umumiy terminini chiqaring.
h=1 h=-2
Tenglamani yechish uchun -h+1=0 va h+2=0 ni yeching.
-h^{2}+3h+1-4h=-1
Ikkala tarafdan 4h ni ayirish.
-h^{2}-h+1=-1
-h ni olish uchun 3h va -4h ni birlashtirish.
-h^{2}-h+1+1=0
1 ni ikki tarafga qo’shing.
-h^{2}-h+2=0
2 olish uchun 1 va 1'ni qo'shing.
h=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va 2 ni c bilan almashtiring.
h=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
h=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
4 ni 2 marotabaga ko'paytirish.
h=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
1 ni 8 ga qo'shish.
h=\frac{-\left(-1\right)±3}{2\left(-1\right)}
9 ning kvadrat ildizini chiqarish.
h=\frac{1±3}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
h=\frac{1±3}{-2}
2 ni -1 marotabaga ko'paytirish.
h=\frac{4}{-2}
h=\frac{1±3}{-2} tenglamasini yeching, bunda ± musbat. 1 ni 3 ga qo'shish.
h=-2
4 ni -2 ga bo'lish.
h=-\frac{2}{-2}
h=\frac{1±3}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan 3 ni ayirish.
h=1
-2 ni -2 ga bo'lish.
h=-2 h=1
Tenglama yechildi.
-h^{2}+3h+1-4h=-1
Ikkala tarafdan 4h ni ayirish.
-h^{2}-h+1=-1
-h ni olish uchun 3h va -4h ni birlashtirish.
-h^{2}-h=-1-1
Ikkala tarafdan 1 ni ayirish.
-h^{2}-h=-2
-2 olish uchun -1 dan 1 ni ayirish.
\frac{-h^{2}-h}{-1}=-\frac{2}{-1}
Ikki tarafini -1 ga bo‘ling.
h^{2}+\left(-\frac{1}{-1}\right)h=-\frac{2}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
h^{2}+h=-\frac{2}{-1}
-1 ni -1 ga bo'lish.
h^{2}+h=2
-2 ni -1 ga bo'lish.
h^{2}+h+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
h^{2}+h+\frac{1}{4}=2+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
h^{2}+h+\frac{1}{4}=\frac{9}{4}
2 ni \frac{1}{4} ga qo'shish.
\left(h+\frac{1}{2}\right)^{2}=\frac{9}{4}
h^{2}+h+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(h+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
h+\frac{1}{2}=\frac{3}{2} h+\frac{1}{2}=-\frac{3}{2}
Qisqartirish.
h=1 h=-2
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}