b uchun yechish
b = \frac{\sqrt{105} + 1}{2} \approx 5,623475383
b=\frac{1-\sqrt{105}}{2}\approx -4,623475383
Baham ko'rish
Klipbordga nusxa olish
-b^{2}+b+26=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 26}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 1 ni b va 26 ni c bilan almashtiring.
b=\frac{-1±\sqrt{1-4\left(-1\right)\times 26}}{2\left(-1\right)}
1 kvadratini chiqarish.
b=\frac{-1±\sqrt{1+4\times 26}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
b=\frac{-1±\sqrt{1+104}}{2\left(-1\right)}
4 ni 26 marotabaga ko'paytirish.
b=\frac{-1±\sqrt{105}}{2\left(-1\right)}
1 ni 104 ga qo'shish.
b=\frac{-1±\sqrt{105}}{-2}
2 ni -1 marotabaga ko'paytirish.
b=\frac{\sqrt{105}-1}{-2}
b=\frac{-1±\sqrt{105}}{-2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{105} ga qo'shish.
b=\frac{1-\sqrt{105}}{2}
-1+\sqrt{105} ni -2 ga bo'lish.
b=\frac{-\sqrt{105}-1}{-2}
b=\frac{-1±\sqrt{105}}{-2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{105} ni ayirish.
b=\frac{\sqrt{105}+1}{2}
-1-\sqrt{105} ni -2 ga bo'lish.
b=\frac{1-\sqrt{105}}{2} b=\frac{\sqrt{105}+1}{2}
Tenglama yechildi.
-b^{2}+b+26=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-b^{2}+b+26-26=-26
Tenglamaning ikkala tarafidan 26 ni ayirish.
-b^{2}+b=-26
O‘zidan 26 ayirilsa 0 qoladi.
\frac{-b^{2}+b}{-1}=-\frac{26}{-1}
Ikki tarafini -1 ga bo‘ling.
b^{2}+\frac{1}{-1}b=-\frac{26}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
b^{2}-b=-\frac{26}{-1}
1 ni -1 ga bo'lish.
b^{2}-b=26
-26 ni -1 ga bo'lish.
b^{2}-b+\left(-\frac{1}{2}\right)^{2}=26+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}-b+\frac{1}{4}=26+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
b^{2}-b+\frac{1}{4}=\frac{105}{4}
26 ni \frac{1}{4} ga qo'shish.
\left(b-\frac{1}{2}\right)^{2}=\frac{105}{4}
b^{2}-b+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b-\frac{1}{2}\right)^{2}}=\sqrt{\frac{105}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b-\frac{1}{2}=\frac{\sqrt{105}}{2} b-\frac{1}{2}=-\frac{\sqrt{105}}{2}
Qisqartirish.
b=\frac{\sqrt{105}+1}{2} b=\frac{1-\sqrt{105}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}