x uchun yechish (complex solution)
x=\frac{-5\sqrt{2}i-2}{9}\approx -0,222222222-0,785674201i
x=\frac{-2+5\sqrt{2}i}{9}\approx -0,222222222+0,785674201i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-9x^{2}-4x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-9\right)\left(-6\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, -4 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-9\right)\left(-6\right)}}{2\left(-9\right)}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+36\left(-6\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16-216}}{2\left(-9\right)}
36 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{-200}}{2\left(-9\right)}
16 ni -216 ga qo'shish.
x=\frac{-\left(-4\right)±10\sqrt{2}i}{2\left(-9\right)}
-200 ning kvadrat ildizini chiqarish.
x=\frac{4±10\sqrt{2}i}{2\left(-9\right)}
-4 ning teskarisi 4 ga teng.
x=\frac{4±10\sqrt{2}i}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{4+10\sqrt{2}i}{-18}
x=\frac{4±10\sqrt{2}i}{-18} tenglamasini yeching, bunda ± musbat. 4 ni 10i\sqrt{2} ga qo'shish.
x=\frac{-5\sqrt{2}i-2}{9}
4+10i\sqrt{2} ni -18 ga bo'lish.
x=\frac{-10\sqrt{2}i+4}{-18}
x=\frac{4±10\sqrt{2}i}{-18} tenglamasini yeching, bunda ± manfiy. 4 dan 10i\sqrt{2} ni ayirish.
x=\frac{-2+5\sqrt{2}i}{9}
4-10i\sqrt{2} ni -18 ga bo'lish.
x=\frac{-5\sqrt{2}i-2}{9} x=\frac{-2+5\sqrt{2}i}{9}
Tenglama yechildi.
-9x^{2}-4x-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-9x^{2}-4x-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
-9x^{2}-4x=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
-9x^{2}-4x=6
0 dan -6 ni ayirish.
\frac{-9x^{2}-4x}{-9}=\frac{6}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\left(-\frac{4}{-9}\right)x=\frac{6}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{9}x=\frac{6}{-9}
-4 ni -9 ga bo'lish.
x^{2}+\frac{4}{9}x=-\frac{2}{3}
\frac{6}{-9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{4}{9}x+\left(\frac{2}{9}\right)^{2}=-\frac{2}{3}+\left(\frac{2}{9}\right)^{2}
\frac{4}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{9} olish uchun. Keyin, \frac{2}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{9}x+\frac{4}{81}=-\frac{2}{3}+\frac{4}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{9} kvadratini chiqarish.
x^{2}+\frac{4}{9}x+\frac{4}{81}=-\frac{50}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{4}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{2}{9}\right)^{2}=-\frac{50}{81}
x^{2}+\frac{4}{9}x+\frac{4}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{9}\right)^{2}}=\sqrt{-\frac{50}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{9}=\frac{5\sqrt{2}i}{9} x+\frac{2}{9}=-\frac{5\sqrt{2}i}{9}
Qisqartirish.
x=\frac{-2+5\sqrt{2}i}{9} x=\frac{-5\sqrt{2}i-2}{9}
Tenglamaning ikkala tarafidan \frac{2}{9} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}