Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+6-13-7x
2x^{2} ni olish uchun -9x^{2} va 11x^{2} ni birlashtirish.
2x^{2}-7-7x
-7 olish uchun 6 dan 13 ni ayirish.
factor(2x^{2}+6-13-7x)
2x^{2} ni olish uchun -9x^{2} va 11x^{2} ni birlashtirish.
factor(2x^{2}-7-7x)
-7 olish uchun 6 dan 13 ni ayirish.
2x^{2}-7x-7=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-7\right)}}{2\times 2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-7\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+56}}{2\times 2}
-8 ni -7 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{105}}{2\times 2}
49 ni 56 ga qo'shish.
x=\frac{7±\sqrt{105}}{2\times 2}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{105}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{105}+7}{4}
x=\frac{7±\sqrt{105}}{4} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{105} ga qo'shish.
x=\frac{7-\sqrt{105}}{4}
x=\frac{7±\sqrt{105}}{4} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{105} ni ayirish.
2x^{2}-7x-7=2\left(x-\frac{\sqrt{105}+7}{4}\right)\left(x-\frac{7-\sqrt{105}}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{7+\sqrt{105}}{4} ga va x_{2} uchun \frac{7-\sqrt{105}}{4} ga bo‘ling.