x uchun yechish
x=\frac{\sqrt{6}}{3}+1\approx 1,816496581
x=-\frac{\sqrt{6}}{3}+1\approx 0,183503419
Grafik
Baham ko'rish
Klipbordga nusxa olish
-9x^{2}+18x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 18 ni b va -3 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324+36\left(-3\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{324-108}}{2\left(-9\right)}
36 ni -3 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{216}}{2\left(-9\right)}
324 ni -108 ga qo'shish.
x=\frac{-18±6\sqrt{6}}{2\left(-9\right)}
216 ning kvadrat ildizini chiqarish.
x=\frac{-18±6\sqrt{6}}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}-18}{-18}
x=\frac{-18±6\sqrt{6}}{-18} tenglamasini yeching, bunda ± musbat. -18 ni 6\sqrt{6} ga qo'shish.
x=-\frac{\sqrt{6}}{3}+1
-18+6\sqrt{6} ni -18 ga bo'lish.
x=\frac{-6\sqrt{6}-18}{-18}
x=\frac{-18±6\sqrt{6}}{-18} tenglamasini yeching, bunda ± manfiy. -18 dan 6\sqrt{6} ni ayirish.
x=\frac{\sqrt{6}}{3}+1
-18-6\sqrt{6} ni -18 ga bo'lish.
x=-\frac{\sqrt{6}}{3}+1 x=\frac{\sqrt{6}}{3}+1
Tenglama yechildi.
-9x^{2}+18x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-9x^{2}+18x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
-9x^{2}+18x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
-9x^{2}+18x=3
0 dan -3 ni ayirish.
\frac{-9x^{2}+18x}{-9}=\frac{3}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\frac{18}{-9}x=\frac{3}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{3}{-9}
18 ni -9 ga bo'lish.
x^{2}-2x=-\frac{1}{3}
\frac{3}{-9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-2x+1=-\frac{1}{3}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{2}{3}
-\frac{1}{3} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{2}{3}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{2}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{6}}{3} x-1=-\frac{\sqrt{6}}{3}
Qisqartirish.
x=\frac{\sqrt{6}}{3}+1 x=-\frac{\sqrt{6}}{3}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}